Overview of osteoporosis in HIV patients

Versions

PDF (Español (España))
Texto (Español (España))

Keywords

Virus de la Inmunodeficiencia Humana
Densidad Ósea
Osteoporosis
Agentes antirretrovirales
Vitamina D Human Immunodeficiency Virus
Bone Density
Osteoporosis
Anti-Retroviral Agents
Vitamin D

How to Cite

Tello-Cajiao, M. E., Riveros Bermudez, S. D., & Abreu Lomba , A. . (2024). Overview of osteoporosis in HIV patients. Interdisciplinary Journal of Epidemiology and Public Health, 6(1), e–10288. https://doi.org/10.18041/2665-427X/ijeph.1.10288 (Original work published June 30, 2023)

Abstract

Introduction: Human immunodeficiency virus (HIV) infection is an important public health problem. Antiretroviral therapy has significantly improved patient survival; as a consequence, the chronicity of the infection has led to several complications, including alterations in bone mineral metabolism.

Objective: Summarize the main factors that affect bone health in HIV patients and result in an increased risk of osteoporosis and fracture in this population.

Methods: A narrative review of the main factors that alter bone mineral metabolism in HIV patients was performed.

Results: Bone mineral metabolism in the HIV patient is affected by traditional modifiable factors such as vitamin D deficiency and non-modifiable factors such as age. However, the presence of the virus, the host immune inflammatory response and retroviral therapy may also decrease bone mineral density.

Conclusion: Early identification and intervention of factors affecting bone health in HIV-infected patients is imperative to reduce the risk of osteoporosis and fractures.

https://doi.org/10.18041/2665-427X/ijeph.1.10288
PDF (Español (España))
Texto (Español (España))

References

Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the Gap: Increases in Life Expectancy among Treated HIV-Positive Individuals in the United States and Canada. PLoS One. 2013; 8: e81355. Doi: 10.1371/JOURNAL.PONE.0081355.

World Health Organization. The Global Health Observatory: HIV; 2022. Accessed: May 29 2023. https://www.who.int/data/gho/data/themes/hiv-aids.

Fondo Colombiano de Enfermedades de Alto Costo. Situación del VIH en Colombia 2022. Bogotá: Cuenta de Alto Costo (CAC); 2023.

Kruger MJ, Nell TA. Bone mineral density in people living with HIV: a narrative review of the literature. AIDS Res Ther. 2017; 14: 35. Doi: 10.1186/S12981-017-0162-Y.

Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008; 93: 3499-504. Doi: 10.1210/JC.2008-0828.

Finnerty F, Walker-Bone K, Tariq S. Osteoporosis in postmenopausal women living with HIV. Maturitas 2017;95:50-4. Doi: 10.1016/J.MATURITAS.2016.10.015.

Rouzi AA, Al-Sibiani SA, Al-Senani NS, Radaddi RM, Ardawi MSM. Independent predictors of all osteoporosis-related fractures among healthy Saudi postmenopausal women: the CEOR Study. Bone. 2012; 50: 713-22. Doi: 10.1016/J.BONE.2011.11.024.

Atencio P, Cabello A, Conesa-Buendía FM, Pérez-Tanoira R, Prieto-Pérez L, Carrillo I, et al. Increased risk factors associated with lower BMD in antiretroviral-therapy-naïve HIV-infected adult male. BMC Infect Dis. 2021; 21: 1-8. Doi: 10.1186/S12879-021-06263-9/TABLES/4.

Biver E. Osteoporosis and HIV Infection. Calcif Tissue Int. 2022; 110: 624. Doi: 10.1007/S00223-022-00946-4.

Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006; 20: 2165-74. Doi: 10.1097/QAD.0B013E32801022EB.

Premaor MO, Compston JE. The Hidden Burden of Fractures in People Living With HIV. JBMR Plus. 2018; 2: 247-56. Doi: 10.1002/JBM4.10055.

Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis. 2011; 52: 1061-8. Doi: 10.1093/CID/CIQ242.

Gupta P, Singh S, Mahto S, Sheoran A, Garga U, Lal A, et al. Prevalence and predictors of low bone mineral density in treatment-naive HIV-infected patients and its correlation with CD4 cell counts. Tzu-Chi Medical J. 2021; 33: 49. Doi: 10.4103/TCMJ.TCMJ_177_19.

Delpino MV, Quarleri J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front Endocrinol (Lausanne). 2020; 11: 502. Doi: 10.3389/FENDO.2020.00502/BIBTEX.

van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel). 2022; 14(2):138. Doi: 10.3390/TOXINS14020138.

Weitzmann MN, Ofotokun I. Physiological and pathophysiological bone turnover - role of the immune system. Nat Rev Endocrinol. 2016; 12: 518-32. Doi: 10.1038/NRENDO.2016.91.

The INSIGHT START Study Group. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N Engl J Med. 2015; 373(9):795-807. Doi: 10.1056/NEJMOA1506816.

Carr A, Grund B, Schwartz A V., Avihingsanon A, Badal-Faesen S, Bernadino JI, et al. The rate of bone loss slows after 1-2 years of initial antiretroviral therapy: final results of the Strategic Timing of Antiretroviral Therapy (START) bone mineral density substudy. HIV Med. 2020; 21: 64-70. Doi: 10.1111/HIV.12796.

Han WM, Wattanachanya L, Apornpong T, Jantrapakde J, Avihingsanon A, Kerr SJ, et al. Bone mineral density changes among people living with HIV who have started with TDF-containing regimen: A five-year prospective study. PLoS One. 2020; 15: e0230368. Doi: 10.1371/JOURNAL.PONE.0230368.

Woodward CLN, Hall AM, Williams IG, Madge S, Copas A, Nair D, et al. Tenofovir-associated renal and bone toxicity. HIV Med. 2009; 10: 482-7. Doi: 10.1111/J.1468-1293.2009.00716.X.

Nylén H, Habtewold A, Makonnen E, Yimer G, Bertilsson L, Burhenne J, et al. Prevalence and risk factors for efavirenz-based antiretroviral treatment-Associated severe Vitamin D deficiency a prospective cohort study. Medicine (United States). 2016; 95 (34): e4631. Doi: 10.1097/MD.0000000000004631.

Wang MWH, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, et al. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest. 2004; 114: 206-13. Doi: 10.1172/JCI15797.

Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009; 23: 817-24. Doi: 10.1097/QAD.0B013E328328F789.

Shiau S, Arpadi SM, Yin MT. Bone Update: Is It Still an Issue Without Tenofovir Disoproxil Fumarate? Curr HIV/AIDS Rep. 2020; 17: 1-5. Doi: 10.1007/S11904-019-00474-1/METRICS.

Buchacz K, Armon C, Palella FJ, Novak RM, Fuhrer J, Tedaldi E, et al. The HIV Outpatient Study-25 Years of HIV Patient Care and Epidemiologic Research. Open Forum Infect Dis. 2020; 7(5): ofaa123. Doi: 10.1093/OFID/OFAA123.

Brown TT, Hoy J, Borderi M, Guaraldi G, Renjifo B, Vescini F, et al. Recommendations for Evaluation and Management of Bone Disease in HIV. Clin Infect Dis. 2015; 60: 1242. Doi: 10.1093/CID/CIV010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Interdisciplinary Journal of Epidemiology and Public Health

Downloads

Download data is not yet available.