Prediction of Medical Costs in a Health Insurance Carrier according to Risk Profiles and Uses by its Affiliates
PDF

Keywords

Health care costs
Health Programs and Plans
Two-part model
Generalized linear model

How to Cite

Herrera Medina, R., Lee, J., & Herrera Cruz, F. (2018). Prediction of Medical Costs in a Health Insurance Carrier according to Risk Profiles and Uses by its Affiliates. Interdisciplinary Journal of Epidemiology and Public Health, 1(1), 15-22. Retrieved from https://revistas.unilibre.edu.co/index.php/iJEPH/article/view/3872

Abstract

Objective: To find a model of prediction of the medical cost of a Health Benefits Management Company (EAPB) with adequate statistical criteria.

Methods: A Cross-sectional study with retrospective follow-up of the use of health services in an EAPB during a one-year period. The sampling frame consisted of a population of 1,529,188 affiliates who were assigned to a primary care IPS group. By simple random sampling size was estimated at 190,917 users. The dependent variable was the cost of the services used deflated to the year 2013. As independent variables besides the traditional sociodemographic variables chosen in this type of prediction models, variables of the insurance were added; Variables of risk management (inclusion or not in promotion and prevention program) and of comorbidities.

Results: Simple Linear Regression modeling showed errors of inappropriate statistical criteria such as violating the principle of normality in cost errors. The Generalized Linear Models, proposed to estimate POS average costs, have an appropriate goodness of fit and evaluated with small Deviations and minimum Akaike criterion (AIC) compared to other models of the exponential family

Conclusions: The appropriate statistical model to predict medical costs was the Generalized Linear Model with two parts segmented by age groups and gender. This research suggests that to estimate the benefit premium of any EAPB, besides socio-demographic variables, insurance variables, membership or not in promotion programs and risk prevention and/or management and the burden of disease of that population should be used.

PDF

References

Escobedo S. Metodología para la estimación de costos estándar de los procedimientos médicos Incluidos en el plan universal de beneficios de salud. Lima: PRAES – Promoviendo Alianzas y Estrategias; 2007. Pp. 38.

Ministerio de la Protección Social. Ley 100 de 1993 por la cual se crea el sistema de seguridad social integral y se dictan otras disposiciones. Bogotá: Ministerio de la Protección Social; 1993.

Mullahy J. Much ado about two reconsidering retransformation and the two-part model in health econometrics. J Health Economics. 1998; 17(3): 247–281.

Deb P, Munkin MK, Trivedic PK. Bayesian analysis of the two-part model with endogeneity application to health care expenditure. J Appl Econometrics. 2006; 21 (7): 1081–1099. Doi: 10.1002/jae.891

Comisión de Regulacion en Salud. Acuerdo 029 de 2011 Por el cual se sustituye el Acuerdo 028 de 2011 que define, aclara y actualiza integralmente el Plan Obligatorio de Salud”. Bogota: Comisión de Regulacion en Salud; 2011.

Ministerio de Salud y Protección Social. Resolución 4505 de 2012. Por la cual se establece el reporte relacionado con el registro de las actividades de protección específica, detección temprana y la aplicación de las guías de atención integral para las enfermedades de interés en salud pública de obligatorio cumplimiento. Bogotá: Ministerio de Salud y Protección Social; 2012.

Ministerio de Salud y Protección Social. Resolución 4700 de 2008 Por la cual se definen la periodicidad, la forma y el contenido de la información que deben reportar las Entidades Promotoras de Salud y las demás Entidades Obligadas a compensar para la operación de la Cuenta de Alto Costo. Diario Oficial No. 47.190. Bogota: Ministerio de Salud y Protección Social; 2008.

WHO. Classifications. International Classification of Diseases (ICD). Consulted on 30/06/2016.

Mihaylova B, Briggs A, O’Hagan A, Thompson SG. Review of statistical methods for analysing healthcare resources and costs. Health Economics. 2011; 20 (8): 897–916.

Cayuela L. Modelos lineales generalizados (GLM). 1a ed. Granada – España: EcoLab, Centro Andaluz de Medio Ambiente, Universidad de Granada - Junta de Andalucía, Avenida del Mediterráneo s/n, E-18006; 2010, 57-87 p.

Dobson AJ, Barnett AG. An introduction to generalized linear Models. 3a ed. British Columbia, Canada: Chapman and Hall/CRC Textbook 320. 2008. 221 p.

Blough DK, Madden CW, Hornbrook MC. Modeling risk using generalized linear models. J Health Economics. 1999; 18(1999): 153–171.

Roca AJ, Muñoz VA. Los estudios de prevalencia. En : Martinez, NJF, Antó, BJM, Castellanos PL, Gili MM, Marset CP, Navarro LV, et al. Salud Pública, Madrid: McGrawHill; 1998.

Rothman, KJ, Lash TL, Greenland S. Modern epidemiology. Little Brown & Co. Boston, MA; 1986, pag 84.

Peñaloza QRE, García CM, Orozco RN, Puerto GS, Ríos MAM. Financiamiento del sistema general de seguridad social en salud. Seguimiento y control preventivo a las políticas públicas. ECOE Ediciones Ltda. 2012. Procuraduría General de la Nación, Bogotá- Colombia.

euroHOPE. European health care outcomes, performance and efficiency. Cost measurement and estimation of cost functions. EuroHOPE Discussion Papers No 2; 2012. [cited 10 Aug 2015]. ver. 29th. Available in: http://www.eurohope.info/doc/EHDP2_Cost.pdf.

Lalonde M. Lalonde and beyond: Looking back at “A New Perspective on the Health of Canadians”. Health Promotion International 1986; 1 (1): 93-100. doi: 10.1093/heapro/1.1.93.

Vargas JM, Giraldo JA. Modelo de predicción de costos en servicios de salud soportado en simulación discreta. Información Tecnológica. 2014; 25 (4): 175-184.

Department of Health. Supporting People with LTCs. An NHS and Social Care Model to support local innovation and integration. Long Term Conditions Team Primary Care, Department of Health: Leeds; 2005.

Feacham R, Sekhri N, White K.Getting. More for their dollar: a comparison of the NHS with California’s Kaiser Permanente. BMJ. 2002; 324: 135-143. doi: 10.1136/bmj.324.73.

Ham C, York N, Sutch S, Shaw R. Hospital bed utilisation in the NHS, Kaiser Permanente, and the US Medicare programme; analysis of routine data. BMJ. 2003; 327(7426): 1257.

Ministerio de Salud y Protección Social. Resolución 1441 de 2016. Por la cual se definen los procedimientos y condiciones que deben cumplir los prestadores de servicios de salud para habilitar los servicios y se dictan otras disposiciones. Diario Oficial, No. 49.851. Bogotá: Ministerio de Salud y Protección Social; 2016.

Eubank RL. Nonparametric regression and spline smoothing. 2nd ed. Statistic: Text book and monographs, vol 157. New York: Marcel Dekker; 1999.

Buja A, Hastie T, Tibshirani R. Linear smoothers and additive models. Ann Statistics. 1989; 17 (2): 453-510.

Vivas D, Guadalajara N, Barrachina I, Trillo JL. Explaining primary healthcare pharmacy expenditure using classification of medications for chronic conditions. Health Policy. 103(1): 9-15.

Ministerio de Salud y Protección Social. Decreto 3047. Por el cual se establecen reglas sobre movilidad entre regímenes para afiliados focalizados en los niveles I y II del Sisbén. Diario Oficial, No. 49.016. Bogota: Ministerio de Salud y Protección Social; 2013.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.