Exploring Beliefs about Learning Mathematics: A Reliability and Factor Analysis Study with Elementary and Middle School Students
DOI:
https://doi.org/10.18041/2382-3240/saber.2024v19n1.11413Keywords:
Children, adolescents, migration, refugee, ICT, children, researchAbstract
In education, students’ beliefs about mathematics have a significant impact on their academic performance and motivation. This study, conducted in the metropolitan area of Cúcuta, Colombia, aimed to validate an instrument to quantify these beliefs, evaluating its reliability, internal consistency and factorial structure. A quantitative methodology was adopted, using a descriptive and correlational design, and a sample of 1039 elementary and middle school students was selected. The instrument used was a questionnaire composed of 36 items with a Cronbach’s Alpha coefficient of 0.941, which shows high reliability. Exploratory and confirmatory factor analysis was carried out to identify the dimensions that structure beliefs about mathematics. The results reveal five predominant factors that explain more than 56.7% of the variability in students’ beliefs: about the mathematics teacher and his or her teaching, the difficulties of learning mathematics, mastery and self-efficacy in mathematics, the usefulness of mathematics, and being mathematically competent. These factors span a broad spectrum of perceptions and highlight the importance of addressing these beliefs in order to optimise academic performance. The findings are illuminating for guiding the creation of effective pedagogical interventions to enhance mathematics education.
Downloads
References
Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, AC-19, 716-723. http://doi.org/10.1109/TAC.1974.1100705
Babbie, E. (2010). The practice of social research (12a. ed.). Belmont: Wadsworth, Cengage Learning.
Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77–85.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
Boaler, J. (1998). Open and Closed Mathematics: Student Experiences and Understandings. Journal for Research in Mathematics Education, 29(1), 41-62.
Boaler, J. (2002). Experiencing School Mathematics: Traditional and Reform Approaches to Teaching and Their Impact on Student Learning. Routledge.
Boaler, J. (2006). How a Detracked Mathematics Approach Promoted Respect, Responsibility, and High Achievement. Theory Into Practice, 45(1), 40-46.
Caballero, A., Guerrero, E., & Blanco, L. J. (2015). Construcción y administración de un instrumento para la evaluación de los afectos hacia las matemáticas. Campo Abierto. Revista De Educación, 33(1), 47-72.
Byrne, B. M. (2016). Structural Equation Modelling with AMOS: Basic Concepts, Applications, and Programming (3rd ed.). Routledge.
Cattell, R. B. (1966). The Scree Plot Test for the Number of Factors. Multivariate Behavioral Research, 1, 140-161. http://doi.org/10.1207/s15327906mbr0102_1
Clarkson, P. C. (1992). Language and Mathematics: A Comparison of Bilingual and Monolingual Students of Mathematics. Educational Studies in Mathematics, 23(4), 417–429.
Cobb, P., & Hodge, L. L. (2002). A relational perspective on issues of cultural diversity and equity as they play out in the mathematics classroom. Mathematical Thinking and Learning, 4(2-3), 249–284. https://doi.org/10.1207/S15327833MTL04023_7
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4ª. ed.). Sage Publications.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of test. Psychometrika, 16, 297-334.
Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
Eccles, J. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives: Psychological and sociological approaches (pp. 75-146). San Francisco, CA: Free man.
Ernest, P. (1991). The philosophy of mathematics education. Routledge.
Fernández, R. (2017). Dominio afectivo de docentes de matemáticas. II Encuentro Internacional en Educación Matemática, 7-16. http://funes.uniandes.edu.co/12768/1/Fernandez2017Dominio.pdf
Fernández-Cézar, R., Garrido, D., & Solano-Pinto, N. (2020). Do Science, Technology, Engineering and Mathematics (STEM) Experimentation Outreach Programs Affect Attitudes towards Mathematics and Science? A Quasi-Experiment in Primary Education. Mathematics, 8(9), 1490. https://doi.org/10.3390/math8091490
Grootenboer, P., & Zevenbergen, R. (2008). Mathematics and Affect. In P. Clarkson & N. Presmeg (Eds.), Critical Issues in Mathematics Education (pp. 107-121). Springer.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7ª. ed.). Edition, Pearson.
Hannula, M. S. (2002). Attitude towards mathematics: Emotions, expectations and values. Educational Studies in Mathematics, 49(1), 25-46.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371-404). Information Age.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Jöreskog, K. G. (1969). A General Approach to Confirmatory Factor Analyses. Psychometrika, 34(2), 183-202.
Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35, 401-415.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
León-Mantero, C., Casas-Rosal, J. C., Pedrosa-Jesús,C., & Maz-Machado, A. (2020). Measuring attitude towards mathematics using Likert scale surveys: The weighted average. PLoS One, 15(10), e0239626. https://doi.org/10.1371/journal.pone.0239626
Lester, F. K. (2013). Thoughts about Research on Mathematical Problem-Solving Instruction. The Mathematics Enthusiast, 10(1), 245-278.
Meo, A. I. (2010). Consentimiento informado, anonimato y confidencialidad en investigación social. La experiencia internacional y el caso de la sociología en Argentina. Aposta. Revista de Ciencias Sociales, (44), 1-30.
Prada, R., Fernández, R., & Hernández, C. A. (2020). A model of structural equations of possible factors that cause por academic performance in mathematic. Revista Espacios, 41(Issue 11). https://www.revistaespacios.com/a20v41n11/20411119.html
Prada, R., Hernández, C. A., & Fernández-Cézar, R. (2021). Determinantes afectivos, procedimentales y pedagógicos del rendimiento académico en matemáticas. Aproximación a una escala de valoración. Revista Boletín Redipe, 10(3), 202–224. https://doi.org/10.36260/rbr.v10i3.1229
Rincón-Álvarez, G. A., Hernández-Suárez, C. A., Prada-Núñez, R., Solano-Pinto, N., & Fernández-Cézar, R. (2022). Cuestionario de creencias sobre las matemáticas: propiedades psicométricas. Educación y Ciudad, (43), 215-236. https://doi.org/10.36737/01230425.n43.2022.2687
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80(1), 1–28. https://doi.org/10.1037/h0092976
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78.
Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99-118.
Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Steiger, J.H. (1990) Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivariate Behavioral Research, 25, 173-180. https://doi.org/10.1207/s15327906mbr2502_4
Suren, N., & Kandemir, M. A. (2020). The effects of mathematics anxiety and motivation on students’ mathematics achievement. International Journal of Education in Mathematics,Science and Technology, 8(3), 190-218.
Tall, D. (1992). Students’ Difficulties in Calculus In Proceedings of Working ICME-7 (pp. 13–28). Québec, Canada.
Vygotsky, L. S. (1978). Mind in society: The development of higher mental processes. Harvard University Press.
Downloads
Published
Versions
- 2025-02-11 (2)
- 2024-02-12 (1)
Issue
Section
License
Copyright (c) 2024 Cesar Augusto Hernández-Suarez, Raquel Fernández-Cézar, Pastor Ramírez-Leal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.