Desenvolvimento de um algoritmo de controle de amortecedor magnetorheológico híbrido para otimizar a resposta dinâmica em estruturas de portal

Autores

DOI:

https://doi.org/10.18041/1900-3803/entramado.1.10270

Palavras-chave:

Algoritmos genéticos, Lógica fuzzy, Amortecedores magnetorreológicos, Controle estrutural

Resumo

Esta pesquisa apresenta uma metodologia para otimizar as forças de controle em edifícios sujeitos a cargas sísmicas. Foi desenvolvido um sistema de controle denominado CLF-MR_1, que combina um algoritmo genético de classificação não dominada NSGA-II e um sistema de controle baseado em lógica difusa. O controlador foi testado numericamente em um edifício real de 96 m de altura, no qual foram instalados 6 amortecedores magnetorheológicos MR. A estrutura foi submetida a 8 acelerações de terremoto com diferentes faixas de frequência. Os parâmetros de entrada para o sistema de controle proposto foram os deslocamentos e as velocidades do primeiro andar do edifício, e a tensão dos dispositivos MR foi definida como o único parâmetro de saída. A eficiência do CLF-MR_1 foi comparada com um segundo controlador chamado CLF-MR_2, que opera usando um sistema de inferência baseado em parâmetros linguísticos. Os resultados obtidos indicam que o CLF-MR_1 melhora significativamente a resposta dinâmica do edifício, em comparação com os resultados obtidos com o CLF-MR_2 e a condição não controlada do edifício.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • David Marcelo Bedoya-Zambrano, Universidad Nacional de Colombia, Sede Medellín - Colombia

    Professor ocasional, Universidad Nacional de Colombia, Sede Medellín - Colômbia

  • Luis Augusto Lara Valencia, Universidad Nacional de Colombia, Sede Medellín - Colombia

    Professor Associado, Universidad Nacional de Colombia, Sede Medellín - Colômbia

  • John Jairo Blandón-Valencia, Universidad Nacional de Colombia, Sede Medellín - Colombia

    Professor Associado, Universidad Nacional de Colombia, Sede Medellín - Colômbia

Referências

ABDEDDAIM, Mahdi; DJEROUNI, Salah; OUNIS, Abdelhafid; ATHAMNIA, Brahim; NOROOZINEJAD-FARSANGI, Ehsan. Optimal design of Magnetorheological damper for seismic response reduction of Base-Isolated structures considering Soil-Structure interaction. In: Structures, 2022. vol. 38, p. 733–752. https://doi.org/https://doi.org/10.1016/j.istruc.2022.02.039

ABDELWAHAB, Mohamed; GHAZAL, Tarek; NADEEM, Kainaat; ABOSHOSHA, Haitham; ELSHAER, Ahmed. Performance-based wind design for tall buildings: Review and comparative study. In: Journal of Building Engineering, 2023. vol. 68, p. 106-103. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106103

BAKHSHINEZHAD, Sina; MOHEBBI, Mohtasham. Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. In: Structures, 2020. vol. 24, p. 678–689. https://doi.org/https://doi.org/10.1016/j.istruc.2020.02.004

BALAJI, PS; KARTHIK-SELVAKUMAR, K. Applications of Nonlinearity in Passive Vibration Control: A Review. In: Journal of Vibration Engineering & Technologies, 2021. vol: 9, p. 183–213. https://doi.org/10.1007/s42417-020-00216-3

BARKHORDARI, M. S.; TEHRANIZADEH, M. Ranking Passive Seismic Control Systems by Their Effectiveness in Reducing Responses of High-Rise Buildings with Concrete Shear Walls Using Multiple-Criteria Decision Making. In: International Journal of Engineering, 2020. vol:33, p.1479–1490. https://doi.org/10.5829/ije.2020.33.08b.06

BATHAEI, Akbar; ZAHRAI, Seyed Mehdi. Improving semi-active vibration control of an 11-story structure with non-linear behavior and floating fuzzy logic algorithm. In: Structures, 2022. vol: 39, p. 132–146. https://doi.org/https://doi.org/10.1016/j.istruc.2022.03.022

BHAIYA, Vishisht; BHARTI, Shiv Dayal; SHRIMALI, Mahendra Kumar; DATTA, Tushar Kanti. Hybrid seismic control of buildings using tuned mass and magnetorheological dampers. In: Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2020. vol: 173, p. 471–487. https://doi.org/10.1680/jstbu.18.00090

BONABEAU, Eric; DORIGO, Marco; THERAULAZ, Guy. Swarm intelligence: from natural to artificial systems (Issue 1). In: Oxford university press. 1999.

DAS, Sourav; CHAKRABORTY, Arunasis. Optimal Design of MRTLCD for Semi-active Vibration Control of Building Structures Using Genetic Algorithm. Springer Singapore. 2020. https://link.springer.com/chapter/10.1007/978-981-15-5693-7_43

DEB, K; PRATAP, A; AGARWAL, S; MEYARIVAN, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. In: IEEE Transactions on Evolutionary Computation, 2002. vol: 6, p. 182–197. https://doi.org/10.1109/4235.996017

DEHGHANI, S; FATHIZADEH, S F; VOSOUGHI, A R; FARSANGI, E N; YANG, T Y; HAJIRASOULIHA, I. Development of a novel cost-effective toggle-brace-curveddamper (TBCD) for mid-rise steel structures using multi-objective NSGA II optimization technique. In: Structural and Multidisciplinary Optimization, 2021. vol: 63, p. 661–688. https://doi.org/10.1007/s00158-020-02718-w

DI TRAPANI, Fabio; MALAVISI, Marcia; MARANO, Giuseppe Carlo; SBERNA, Antonio Pio; GRECO, Rita. Optimal seismic retrofitting of reinforced concrete buildings by steel-jacketing using a genetic algorithm-based framework. In: Engineering Structures, 2020. vol: 219, p. 110864. https://doi.org/https://doi.org/10.1016/j.engstruct.2020.110864

DYKE, S. J.; SPENCER, B. F.; SAIN, M. K.; CARLSON, J. D. Phenomenological model of a magnetorheological damper. In: Journal of Engineering Mechanics, ASCE, 1997. vol: 123, p. 230–238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)

EMMERICH, Michael T M; DEUTZ, André H. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. In: Natural Computing, 2018. vol: 17, p. 585–609. https://doi.org/10.1007/s11047-018-9685-y

FU, Weiqing; ZHANG, Chunwei; LI, Mao; DUAN, Cunkun. Experimental Investigation on Semi-Active Control of Base Isolation System Using Magnetorheological Dampers for Concrete Frame Structure. In Applied Sciences, 2019. Vol: 9, p.3866. https://doi.org/10.3390/app9183866

GEN, Mitsuo; CHENG, Runwei. Genetic algorithms and engineering optimization (Vol. 7). Wiley-Interscience. 1999. 512p 10.1002/9780470172261

HAN, Xiaolei; HUANG, Difang ; JI, Jing; LIN, Jinyue. Component deformation-based seismic design method for RC structure and engineering application. In: Earthquakes and Structures, 2019. vol: 16, p. 575–588. https://doi.org/10.12989/eas.2019.16.5.575

HE, Xiangdong; LU, Z Zheng. Seismic fragility assessment of a super tall building with hybrid control strategy using IDA method. In: Soil Dynamics and Earthquake Engineering, 2019. vol: 123, p. 278–291. https://doi.org/https://doi.org/10.1016/j.soildyn.2019.05.003

HOSSEINAEI, Saeed; GHASEMI, Mohammad Reza; ETEDALI, Sadegh. Optimal Design of Passive and Active Control Systems in Seismic-excited Structures Using a New Modified TLBO. In: Periodica Polytechnica Civil Engineering, 2021. vol: 65, p. 37–55. https://doi.org/10.3311/PPci.16507

HOSSEINI LAVASSANI, Seyed Hossein; SHANGAPOUR, Saman; HOMAMI, Peyman; GHAREHBAGHI, Vahidreza; NOROOZINEJAD FARSANGI, Ehsan; YANG, T Y. An innovative methodology for hybrid vibration control (MR+TMD) of buildings under seismic excitations. In: Soil Dynamics and Earthquake Engineering, 2022. vol: 155, p. 107175. https://doi.org/https://doi.org/10.1016/j.soildyn.2022.107175

JUNG, Hyung-Jo; SPENCER, Billie F; LEE, In-Won. Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers. In: JJournal of Structural Engineering, 2003. vol: 129(7), p. 873–883. https://doi.org/10.1061/(asce)0733-9445(2003)129:7(873)

KATOCH, Sourabh; CHAUHAN, Sumit Singh; KUMAR, Vijay. A review on genetic algorithm: past, present, and future. In: Multimedia Tools and Applications, 2021. vol: 80(5), p. 8091–8126. https://doi.org/10.1007/s11042-020-10139-6

KIM, Hyun-Su; KANG, Joo-Won. Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm. In: Engineering Structures, 2012. vol: 41, p. 242–257. https://doi.org/10.1016/j.engstruct.2012.03.038

LARA VALENCIA, Luis Augusto. Estudo de Algorítimo de Controle Semi-Ativo Aplicados a Amortecedores. Tese (doutorado) - Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil, 2011. 223p. http://educapes.capes.gov.br/handle/capes/621217

LAVASANI, Seyed Hossein Hosseini; DOROUDI, Rouzbeh. Meta heuristic active and semi-active control systems of high-rise building. In: International Journal of Structural Engineering, 2020. vol: 10(3), p. 232–253. https://doi.org/10.1504/IJSTRUCTE.2020.108529

LEE, C. C. Fuzzy logic in control systems: fuzzy logic controller. I. In: IEEE Transactions on Systems, Man, and Cybernetics, 1990. vol: 20(2), p. 404–418. https://doi.org/10.1109/21.52551

LEYVA, Herian; BOJÓRQUEZ, Juan; BOJÓRQUEZ, Edén; REYES-SALAZAR, Alfredo; CARRILLO, Julián; LÓPEZ-ALMANSA, Francisco. Multi-objective seismic design of BRBs-reinforced concrete buildings using genetic algorithms. In: Structural and Multidisciplinary Optimization, 2021. vol: 64(4), p. 2097–2112. https://doi.org/10.1007/s00158-021-02965-5

LIU, Yanming; GORDANINEJAD, Faramarz; EVRENSEL, Cahit A; HITCHCOCK, Gregory H. Experimental study on fuzzy logic vibration control of a bridge using fail-safe magnetorheological fluid dampers. In: Proc. SPIE, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways 2001. vol: 4330. https://doi.org/10.1117/12.434135

MAHROUS, Amgad; ABDELRAHMAN, Belal; GALAL, Khale. Seismic response analysis of reinforced masonry core walls with boundary elements. In: Engineering Structures, 2022. vol: 270, p. 114882. https://doi.org/https://doi.org/10.1016/j.engstruct.2022.114882

MEI, Zhen; GUO, Zixiong; CHEN, Lincong; WANG, Haifeng; GAO, Yichao. Genetic algorithm-based integrated optimization of active control systems for civil structures subjected to random seismic excitations. In: Engineering Optimization, 2020. vol: 52(10), p. 1700–1719. https://doi.org/10.1080/0305215X.2019.1677632

MITTAL, Kanika; JAIN, Amita; VAISLA, Kunwar Singh; CASTILLO, Oscar; KACPRZYK, Janusz. A comprehensive review on type 2 fuzzy logic applications: Past, present and future. In: Engineering Applications of Artificial Intelligence, 2020: vol: 95, p. 103916. https://doi.org/https://doi.org/10.1016/j.engappai.2020.103916

NICKLOW, John; REED, Patrick; SAVIC, Dragan; DESSALEGNE, Tibebe; HARRELL, Laura; CHAN-HILTON, Amy; KARAMOUZ, Mohammad; MINSKER, Barbara; OSTFELD, Avi; SINGH, Abhishek; ZECHMAN, Emily. State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. In: Journal of Water Resources Planning and Management, 2010. vol: 136, p. 412–432. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000053

RAEESI, Farzad; AZAR, Bahman Farahmand; VELADI, Hedayat; TALATAHARI, Siamak. An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm. In: Structures, 2020. vol: 26, p. 406–416. https://doi.org/https://doi.org/10.1016/j.istruc.2020.04.026

REZA, S M; ENRICO, S. Analysis of Steel-Concrete Composite Frames with Bond-Slip. In: Journal of Structural Engineering, 2001. vol: 127(11), p. 1243–1250. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1243)

SAINI, R S T; CHANDRAMOHAN, S; SUJATHA, S; KUMAR, H. Design of bypass rotary vane magnetorheological damper for prosthetic knee application. In: Journal of Intelligent Material Systems and Structures, 2020. vol: 32(9), p. 931–942. https://doi.org/10.1177/1045389X20942577

SAPIŃSKI, Bogdan; FILUŚ, Jacek. Analysis of parametric models of MR linear damper. In: Journal of Theoretical and Applied Mechanics, 2003. vol: 41(2), p. 215–240. http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v41n2p215

THE CENTER FOR ENGINEERING STRONG MOTION DATA (CESMD). (n.d.). Strong-Motion Data Set. https://www.strongmotioncenter.org/cgi-bin/CESMD/archive.pl

WANG, Guangshuo; GENG, Jiahong; QI, Xiongwei; DU, Tianxiang; ZENG, Yingzhe; YU, Ruitao; YUAN, Mingwei; PENG, Hesong; LI, Haibin; CHEN, Chao. Rheological performances and enhanced sedimentation stability of mesoporous Fe3O4 nanospheres in magnetorheological fluid. In: Journal of Molecular Liquids, 2021. vol: 336, p. 116389. https://doi.org/https://doi.org/10.1016/j.molliq.2021.116389

WANG, Wenxi; HUA, Xugang; WANG, Xiuyong; WU, Jiali; SUN, Hongxin; SONG, Gangbing. Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system. In: Structural Control and Health Monitoring, 2019. vol: 26(1), p. e2280. https://doi.org/https://doi.org/10.1002/stc.2280

WANG, Zhen; PAN, Wei; ZHANG, Zhiqian. High-rise modular buildings with innovative precast concrete shear walls as a lateral force resisting system. In: Structures, 2020. vol: 26, p. 39–53. https://doi.org/https://doi.org/10.1016/j.istruc.2020.04.006

WANI, Zubair Rashid; TANTRAY, Manzoor; SHEIKH, Javed Iqbal. Experimental and numerical studies on multiple response optimization-based control using iterative techniques for magnetorheological damper-controlled structure. In: The Structural Design of Tall and Special Buildings, 2021. vol: 30(13), p. e1884. https://doi.org/https://doi.org/10.1002/tal.1884

WIEHE, A; KIEBURG, C; MAAS, J. Temperature induced effects on the durability of MR fluids. In: Journal of Physics: Conference Series, 2013. vol: 412(1), p. 12017. https://doi.org/10.1088/1742-6596/412/1/012017

WU, Qiaoyun; YAN, Huichao; ZHU, Hongping; BAI, Xixuan. Shaking table test study on the seismic isolation effect of a hybrid passive control system. In: Measurement, 2020. vol: 164, p. 108125. https://doi.org/https://doi.org/10.1016/j.measurement.2020.108125

YOON, Dal-Seong; KIM, Gi-Woo; CHOI, Seung-Bok. Response time of magnetorheological dampers to current inputs in a semi-active suspension system: Modeling, control and sensitivity analysis. In: Mechanical Systems and Signal Processing, 2021. vol: 146, p. 106999. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.106999

YU, Yang; ROYEL, Sayed; LI, Yancheng; LI, Jianchun; YOUSEFI, Amir M; GU, Xiaoyu; LI, Shaoqi; LI, Huan. Dynamic modelling and control of shear-mode rotational MR damper for mitigating hazard vibration of building structures. In: Smart Materials and Structures, 2020. vol: 29(11), p. 114006. https://doi.org/10.1088/1361-665X/abb573

ZARE GOLMOGHANY, Mohsen; ZAHRAI, Seyed Mehdi. Improving seismic behavior using a hybrid control system of friction damper and vertical shear panel in series. In: Structures, 2021. vol: 31, p. 369–379. https://doi.org/https://doi.org/10.1016/j.istruc.2021.02.007

ZAREIE, Shahin; ISSA, Anas Salem; SEETHALER, Rudolf; ZABIHOLLAH, Abolghassem; AHMAD, Rafiq. A novel SMA-magnetorheological hybrid bracing system for seismic control. In: Engineering Structures, 2021. vol: 244, p. 112709. https://doi.org/10.1016/j.engstruct.2021.112709

ZAREIE, Shahin; ZABIHOLLAH, Abolghassem. A semi-active SMA-MRF structural stability element for seismic control in marine structures. In: Applied Ocean Research, 2020. vol: 100, p. 102161. https://doi.org/https://doi.org/10.1016/j.apor.2020.102161

ZHANG, Chunwei; WANG, Hao. Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. In: Structural Control and Health Monitoring, 2020. vol: 27(6), p. e2543. https://doi.org/https://doi.org/10.1002/stc.2543

ZHANG, Na; ZHAO, Qiang. Back-Stepping Sliding Mode Controller Design for Vehicle Seat Vibration Suppression Using Magnetorheological Damper. In: Journal of Vibration Engineering & Technologies, 2021. vol: 9(8), p. 1885–1902. https://doi.org/10.1007/s42417-021-00333-7

ZHAO, Yu-Liang; XU, Zhao-Dong; WANG, Cheng. Wind vibration control of stay cables using magnetorheological dampers under optimal equivalent control algorithm. In: Journal of Sound and Vibration.2019. vol. 443, p. 732-747. https://doi.org/https://doi.org/10.1016/j.jsv.2018.12.016

Publicado

2023-11-28

Edição

Seção

ARTIGOS DE PESQUISA

Como Citar

Desenvolvimento de um algoritmo de controle de amortecedor magnetorheológico híbrido para otimizar a resposta dinâmica em estruturas de portal. (2023). Entramado, 20(1), e-10270. https://doi.org/10.18041/1900-3803/entramado.1.10270

Artigos Semelhantes

1-10 de 37

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.