The complex and heterogeneous evidence describing cell biology in neuroinflammation
DOI:
https://doi.org/10.18041/2665-427X/ijeph.2.10605Keywords:
Neuroinflammation, microglia, astrocytes, lipopolysaccharide, sickness behavior, blood–brain barrier, neurovascular unit, in vitro, modelsAbstract
Neuroinflammation is a complex integration of responses of all cells present within the Central Nervous System, including neurons, macroglia, microglia, and infiltrating leukocytes. Neuroinflammatory disorders occur when the immune system becomes too active and attacks healthy cells, having an underlying pathology surrounding them. The immune system can damage parts of the central nervous system. Cell biology is broad in addressing and defining a brain that faces inflammation. Understanding pro-inflammatory and anti-inflammatory action in the brain depends on microglia and astrocytes. Several animal studies have identified inflammatory markers, including IL-1, TNF-α, and IL-6 mRNA. A particular review by "Johns Hopkins Medicine International" concluded that understanding neuroinflammation from an ischemic lesion is paramount, proposing research perspectives and recognizing in vitro studies that allow us to search for alternative therapies to improve patients.
Downloads
References
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016; 139 (Suppl 2): 136-153. doi: 10.1111/jnc.13607.
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: friend or foe? Mol Neurobiol. 2017; 54(10): 8071-8089. doi: 10.1007/s12035-016-0297-1.
Huttner HB, Schwab S. Malignant middle cerebral artery infarction: clinical characteristics, treatment strategies, and future perspectives. Lancet Neurol. 2009; 8(10): 949-58. doi: 10.1016/S1474-4422(09)70224-8.
Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006; 147(Suppl 1): S232-40. doi: 10.1038/sj.bjp.0706400.
Allaman I, Bélanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 2011;34(2):76-87. doi: 10.1016/j.tins.2010.12.001.
Juli C, Heryaman H, Arnengsih, Ang ET, Defi IR, Gamayani U, Atik N. The number of risk factors increases the recurrence events in ischemic stroke. Eur J Med Res. 2022; 27(1): 138. doi: 10.1186/s40001-022-00768-y.
Kalehua AN, Nagel JE, Whelchel LM, Gides JJ, Pyle RS, Smith RJ, et al. Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res. 2004; 297(1): 197-211.
Matute C, Domercq M, Sánchez-Gómez MV. Glutamate-mediated glial injury: Mechanisms and clinical importance. GLIA. 2006; 53: 212-24.
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55(5): 453-62. doi: 10.1002/glia.20467.
Kono H, Onda A, Yanagida T. Molecular determinants of sterile inflammation. Current Opinion Immunol. 2014; 26: 147-56.
Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010; 28: 321-42.
Alvares BCR, Freitas GG, Candelario-Jalil E, Fiebich BL, Pinheiro deOAC. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019; 20(9): 2293. doi: 10.3390/ijms20092293.
Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int J Mol Sci. 2022 Jan; 23(1): 14. doi: 10.3390/ijms23010014
Duris K, Splichal Z, Jurajda M. The role of inflammatory response in stroke associated programmed cell death. Curr Neuropharmacol. 2018; 16(9): 1365-74. doi: 10.2174/1570159X16666180222155833.
Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018; 38(2): 208-11. doi: 10.1055/s-0038-1649503.
Dunn J, Grider MH. Physiology, Adenosine Triphosphate (ATP). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024
Song M, Ping YS. Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res. 2014;5(1):17-27. doi: 10.1007/s12975-013-0314-x.
Pirahanchi Y, Aeddula NR. Physiology, sodium potassium pump (Na+ K+ Pump). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019.
Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med. 2011; 17(7): 796-808. doi: 10.1038/nm.2399..
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6):7204-7218. doi: 10.18632/oncotarget.23208.
Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. V J Transl Med. 2009; 7: 97. doi: 10.1186/1479-5876-7-97.
Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019; 145(Pt B): 230-246. doi: 10.1016/j.neuropharm.2018.08.004.
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev. 2010; 62(3): 405-96. doi: 10.1124/pr.109.002451.
Lamy C, Mas J-L. 37 Hypertensive encephalopathy. In: Mohr JP, Grotta JC, Mayberg MR, Wolf PA, Moskowitz MA, von Kummer R. Stroke: Pathophysiology, Diagnosis, and Management. (Fifth Edition). W.B. Saunders; 2011. Pp. 734-740. http://www.sciencedirect.com/science/article/pii/B9781416054788100375
Mohr JP, Grotta JC, Mayberg MR, Wolf PA, Moskowitz MA, von Kummer R. Stroke: Pathophysiology, Diagnosis, and Management. Stroke: Pathophysiology, Diagnosis, and Management. Elsevier; 2011.
Leonoudakis D, Braithwaite SP, Beattie MS, Beattie EC, Leonoudakis DD. TNFα-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol. 2004;1(3):263-73. Doi: 10.1017/S1740925X05000608
Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: Diversity, development and disease. Curr Opin Neurobiol. 2001; 11(3): 327-35. doi: 10.1016/s0959-4388(00)00215-4.
Carvajal FJ, Mattison HA, Cerpa W. Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast. 2016; 2016: 2701526. doi: 10.1155/2016/2701526.
Phaniendra A, Babu DJ, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015; 30(1): 11-26. doi: 10.1007/s12291-014-0446-0
Okada T, Suzuki H, Travis ZD, Zhang JH. The stroke-induced blood-brain barrier disruption: current progress of inspection technique, mechanism, and therapeutic target. Curr Neuropharmacol. 2020; 18(12): 1187-212. doi: 10.2174/1570159X18666200528143301.
Drieu A, Levard D, Vivien D, Rubio M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther Adv Neurol Disord. 2018; 11: 1756286418789854. doi: 10.1177/1756286418789854.
.
Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016; 173(4): 692-702. doi: 10.1111/bph.13125
Griffin WST, Barger SW. Neuroinflammatory cytokines - The common thread in Alzheimer pathogenesis. US Neurol. 2010; 6(2): 19-27.
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020; 9(1): 42. doi: 10.1186/s40035-020-00221-2.
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. V Int J Mol Sci. 2015; 16(11): 25959-81. doi: 10.3390/ijms161125939.
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, et al. The specific role of reactive astrocytes in stroke. Front Cell Neurosci. 2022; 16: 850866. doi: 10.3389/fncel.2022.850866.
Lallukka T, Ervasti J, Lundström E, Mittendorfer-Rutz E, Friberg E, Virtanen M, et al. Trends in diagnosis-specific work disability before and after stroke: A longitudinal population-based study in Sweden. J Am Heart Assoc. 2018; 7(1): e006991. doi: 10.1161/JAHA.117.006991
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron. 2010; 67(2): 181-98. doi: 10.1016/j.neuron.2010.07.002.
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation. 2019; 16(1): 142. doi: 10.1186/s12974-019-1516-2.
Yan T, Chopp M, Chen J. Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull. 2015; 31(6): 717-34. doi: 10.1007/s12264-015-1567-z.
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol. 2019; 18(11): 1058-1066. doi: 10.1016/S1474-4422(19)30078-X.
42. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol. 2020; 11: 294. doi: 10.3389/fimmu.2020.00294.
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci. 2020; 21(20): 7609. doi: 10.3390/ijms21207609.
Mortaz E, Alipoor SD, Adcock IM, Mumby S, Koenderman L. Update on neutrophil function in severe inflammation. Front Immunol. 2018; 9: 2171. doi: 10.3389/fimmu.2018.02171.
Butterfield TA, Best TM, Merrick MA. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train. 2006; 41(4): 457–465.
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020; 11: 594672. doi: 10.3389/fneur.2020.594672.
Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015; 9: 28. doi: 10.3389/fncel.2015.00028.
Pistono C, Bister N, Stanová I, Malm T. Glia-Derived extracellular vesicles: role in central nervous system communication in health and disease. Front Cell Dev Biol. 2021; 8: 623771. doi: 10.3389/fcell.2020.623771.
Tang LL, Wu YB, Fang CQ, Qu P, Gao ZL. NDRG2 promoted secreted miR-375 in microvesicles shed from M1 microglia, which induced neuron damage. Biochem Biophys Res Commun. 2016; 469(3): 392-8. doi: 10.1016/j.bbrc.2015.11.098.
Maulik D, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: Role of nitric oxide. Neurosci Lett. 2008; 439(1): 94-9. doi: 10.1016/j.neulet.2008.02.037.
Mao S, Sun Q, Xiao H, Zhang C, Li L. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2. Protein Cell. 2015; 6(7): 529-40. doi: 10.1007/s13238-015-0168-y.
Jin K, Mao XO, Zhu Y, Greenberg DA. MEK and ERK protect-hypoxic cortical neurons via phosphorylation of Bad. J Neurochem. 2002; 80(1):119-25. doi: 10.1046/j.0022-3042.2001.00678.x.
Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci. 2022; 14: 825086. doi: 10.3389/fnagi.2022.825086.
Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, Olopade JO. Astrocytes and microglia in stress-induced neuroinflammation: the african perspective. Front Immunol. 2022; 13: 795089. doi: 10.3389/fimmu.2022.795089.
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The interplay between neuroinfections, the immune system and neurological disorders: a focus on africa. Front Immunol. 2022; 12: 803475. doi: 10.3389/fimmu.2021.803475.
Quesada-Yamasaki D, Arce-Soto E, Ramírez K, Fornaguera-Trías J, Mora-Gallegos A. El papel de la microglía en la señalización neuroinflamatoria y la respuesta neuroinmune. Revista eNeurobiología. 2016; 7(16):101016.
Castro V, Toborek M. The blood-brain barrier. In: Neuroinflammation and Neurodegeneration. Springer New York; 2014. p. 3-28.
John B, Hunter CA, Harris TH. Immune cell trafficking in the central nervous system. In: Neuroinflammation and Neurodegeneration. Springer New York; 2014. p. 29-45.
Peterson PK, Toborek M. Neuroinflammation and neurodegeneration. New York: Springer; 2014.
Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke. V Ann N Y Acad Sci. 2010; 1207: 32-40. doi: 10.1111/j.1749-6632.2010.05735.x.
Dresselhaus EC, Meffert MK. Cellular specificity of NF-κB function in the nervous system. Front Immunol. 2019; 10: 1043. doi: 10.3389/fimmu.2019.01043.
Bazan NG. Is NF-κB from astrocytes a decision maker of neuronal life or death? (Commentary on Dvoriantchikova et al.). Europ J Neurosci. 2009; 30(2) : 173-174. Doi : 10.1111/j.1460-9568.2009.06853.x
Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR, et al. Inactivation of astroglial NF-κB promotes survival of retinal neurons following ischemic injury. Eur J Neurosci. 2009; 30(2): 175-85.
Santamaría-Cadavid M, Rodríguez-Castro E, Rodríguez-Yáñez M, Arias-Rivas S, López-Dequidt I, Pérez-Mato M, et al. Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neuro. 2020; 20(1): 68. Doi: 10.1186/s12883-020-01648-w
Rodríguez-Castro E, López-Dequit I, Santamaría-Cadavid M, Arias-Rivas S, Rodríguez-Yáñez M, Pumar JM, et al. Trends in stroke outcomes in the last ten years in a European tertiary hospital. BMC Neurol. 2018; 18(1): 164. doi: 10.1186/s12883-018-1164-7.
Wang H, Wang Z, Wu Q, Yuan Y, Cao W, Zhang X. Regulatory T cells in ischemic stroke. CNS Neurosci Ther. 2021; 27(6): 643-651. doi: 10.1111/cns.13611.
Croot EJ, Ryan TW, Read J, Campbell F, O’Cathain A, Venables G. Transient ischaemic attack: A qualitative study of the long term consequences for patients. BMC Fam Pract. 2014; 15: 174. doi: 10.1186/s12875-014-0174-9..
Jia J, Yang L, Chen Y, Zheng L, Chen Y, Xu Y, et al. The Role of microglial phagocytosis in ischemic stroke. Front Immunol. 2022; 12: 790201. doi: 10.3389/fimmu.2021.790201.
Golanov E V., Sharpe MA, Regnier-Golanov AS, Del Zoppo GJ, Baskin DS, Britz GW. Fibrinogen chains intrinsic to the brain. Front Neurosci. 2019; 13: 541. doi: 10.3389/fnins.2019.00541.
Norris EH, Strickland S. Fibrinogen in the nervous system: glia beware. V Neuron. 2017; 96(5): 951-953. doi: 10.1016/j.neuron.2017.11.021.
Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat Rev Neurosci. 2018; 19(5): 283-301. doi: 10.1038/nrn.2018.13.
Locatelli L, Colciago A, Castiglioni S, Maier JA. Platelets in wound healing: what happens in space? Front Bioeng Biotechnol. 2021; 9: 716184. doi: 10.3389/fbioe.2021.716184.
Sulimai N, Brown J, Lominadze D. The effects of fibrinogen’s interactions with its neuronal receptors, intercellular adhesion molecule-1 and cellular prion protein. Biomolecules. 2021; 11(9): 1381. doi: 10.3390/biom11091381.
Lawrence SE, Cummings EA, Gaboury I, Daneman D. Population-based study of incidence and risk factors for cerebral edema in pediatric diabetic ketoacidosis. J Pediatr. 2005; 146(5): 688-92. doi: 10.1016/j.jpeds.2004.12.041.
Nehring SM, Tadi P, Tenny S. Cerebral Edema. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537272/
Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic A V. Inflammation and brain edema: New insights into the role of chemokines and their receptors. Acta Neurochir Suppl. 2006; 96: 444-50. doi: 10.1007/3-211-30714-1_91.
Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, et al. Viral infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during japanese encephalitis virus infection. J Virol. 2015; 89(10): 5602-14. doi: 10.1128/JVI.00143-15.
Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, et al. Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation. 2018; 15(1): 237. Doi: 10.1186/s12974-018-1267-5
Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, et al. HMGB1: A common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci. 2018; 12: 628. doi: 10.3389/fnins.2018.00628.
Wang M, Gauthier A, Daley LA, Dial K, Wu J, Woo J, et al. The role of hmgb1, a nuclear damage-associated molecular pattern molecule, in the pathogenesis of lung diseases. Antioxid Redox Signal. 2019; 31(13): 954-993. doi: 10.1089/ars.2019.7818.
Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015; 62(2): 600-14. doi: 10.1002/hep.27841.
Denning NL, Aziz M, Gurien SD, Wang P. Damps and nets in sepsis. Front Immunol. 2019; 10: 2536. doi: 10.3389/fimmu.2019.02536.
Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021 Apr;26(3-4):152-162. doi: 10.1007/s10495-021-01663-3.
Krysko O, Aaes TL, Bachert C, Vandenabeele P, Krysko D V. Many faces of DAMPs in cancer therapy. Cell Death Dis. 2013; 4(5): e631. doi: 10.1038/cddis.2013.156.
Krysko D V., Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012; 12(12): 860-75. doi: 10.1038/nrc3380.
Arigo Biolaboratories. Total solution for HMGB1 research. Arigo Biolaboratories. Cited: 2022 Nov 26. Available from: https://www.arigobio.com/HMGB1
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol. 2022; 13: 1029891. doi: 10.3389/fneur.2022.1029891.
Goodwin GH, Sanders C, Johns EW. A new group of chromatin‐associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38(1):14-9.
Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001; 2(10): 734-44. doi: 10.1038/35094583.
Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013; 4: 18. doi: 10.3389/fneur.2013.00018.
Chen X, Patra A, Sadowska GB, Stonestreet BS. Ischemic-reperfusion injury increases matrix metalloproteinases and tissue metalloproteinase inhibitors in fetal sheep brain. Dev Neurosci. 2018; 40(3): 234-45. Doi: 10.1159/000489700
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015; 1623: 30-38. doi: 10.1016/j.brainres.2015.04.024
.
Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. 1998; 29(5): 1020-30.
Borelli WV, De Souza AC, Reckziegel E, Lioutas VA. Mental health in stroke neurology: facing challenges and building solutions. Stroke. 2022; 53(10): e457-e460. doi: 10.1161/STROKEAHA.122.037783.
Reinhard SM, Razak K, Ethell IM. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. V Front Cell Neurosci. 2015; 9: 280. doi: 10.3389/fncel.2015.00280.
Minta K, Brinkmalm G, Al Nimer F, Thelin EP, Piehl F, Tullberg M, et al. Dynamics of cerebrospinal fluid levels of matrix metalloproteinases in human traumatic brain injury. Sci Rep. 2020; 10(1): 18075. doi: 10.1038/s41598-020-75233-z.
Pijet B, Stefaniuk M, Kostrzewska-Ksiezyk A, Tsilibary PE, Tzinia A, Kaczmarek L. Elevation of MMP-9 levels promotes epileptogenesis after traumatic brain injury. Mol Neurobiol. 2018; 55(12): 9294-306. doi: 10.1007/s12035-018-1061-5.
Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013; 4: 32. doi: 10.3389/fneur.2013.00032..
Tsuji K, Aoki T, Tejima E, Arai K, Lee SR, Atochin DN, et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke. 2005; 36(9): 1954-9. doi: 10.1161/01.STR.0000177517.01203.eb.
Copin J-C, Bengualid DJ, Da Silva RF, Kargiotis O, Schaller K, Gasche Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci. 2011; 34(7): 1085-92. doi: 10.1111/j.1460-9568.2011.07843.x.
Dong X, Song Y-N, Liu W-G, Guo X-L. MMP-9, a Potential target for cerebral ischemic treatment. Curr Neuropharmacol. 2009; 7(4): 269-75. doi: 10.2174/157015909790031157.
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, et al. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol. 2021; 12: 661955. doi: 10.3389/fneur.2021.661955.
Young AR, Sette G, Touzani O, Rioux P, Derlon JM, MacKenzie ET, et al. Relationships between high oxygen extraction fraction in the acute stage and final infarction in reversible middle cerebral artery occlusion: An investigation in anesthetized baboons with positron emission tomography. J Cereb Blood Flow Metab. 1996;16(6):1176-88.
Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci. 2016; 10: 56. doi: 10.3389/fncel.2016.00056.
Young AR, Touzani O, Derlon JM, Sette G, MacKenzie ET, Baron JC. Early reperfusion in the anesthetized baboon reduces brain damage following middle cerebral artery occlusion: A quantitative analysis of infarction volume. Stroke. 1997;28(3):632-8. doi: 10.1161/01.str.28.3.632
Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 2022; 12(4): 1639-1658. doi: 10.7150/thno.68304
Adibhatla R, Hatcher J. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies. CNS Neurol Disord Drug Targets. 2008; 7(3): 243-53. doi: 10.2174/187152708784936608.
Seo JH, Guo S, Lok J, Navaratna D, J. Whalen M, Kim K-W, et al. Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des. 2012; 18(25): 3645–3648. doi: 10.2174/138161212802002742
Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH. Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol. 1997;23(5):406-15.
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection - Fast activation and signaling. Prog Neurobiol. 2017; 153: 86-99. doi: 10.1016/j.pneurobio.2017.03.005.
Amantea D, Corasaniti MT, Mercuri NB, Bernardi G, Bagetta G. Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience. 2008; 152(1): 8-17.
Dagonnier M, Donnan GA, Davis SM, Dewey HM, Howells DW. Acute stroke biomarkers: are we there yet? Front Neurol. 2021; 12: 619721. doi: 10.3389/fneur.2021.619721.
Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: Evolving roles in injury and reparative processes. Neuroscientist. 2010; 16(2): 156-70. doi: 10.1177/1073858409355830.
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci. 2019 Aug;76(16):3207-3228. doi: 10.1007/s00018-019-03180-8.
Fujioka H, Dairyo Y, Yasunaga KI, Emoto K. Neural functions of matrix metalloproteinases: Plasticity, neurogenesis, and disease. Biochem Res Int. 2012; 2012: 789083. doi: 10.1155/2012/789083.
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in post-ischemic neurodegeneration of the brain: Friend, foe, or both? Int J Mol Sci. 2021; 22(9): 4405. doi: 10.3390/ijms22094405.
Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest. 2000;106(6):723-31. doi: 10.1172/JCI11003.
Hofmeijer J, Algra A, Jaap KL, Bart WH. Predictors of life-threatening brain edema in middle cerebral artery infarction. Cerebrovasc Dis 2008; 25176-184. doi 101159/000113736.
Hossmann K-A. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006; 26(7-8): 1057-83. doi: 10.1007/s10571-006-9008-1.
Qin X, Akter F, Qin L, Cheng J, Guo M, Yao S, et al. Adaptive Immunity Regulation and Cerebral Ischemia. Front Immunol. 2020; 11: 689. doi: 10.3389/fimmu.2020.00689.
Lourbopoulos A, Mourouzis I, Xinaris C, Zerva N, Filippakis K, Pavlopoulos A, et al. Translational Block in Stroke: A Constructive and “Out-of-the-Box” Reappraisal. Front Neurosci. 2021;15: 652403. doi: 10.3389/fnins.2021.652403.
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: Mechanisms in search of treatments. Neuron. 2010; 67(2): 181-98. doi: 10.1016/j.neuron.2010.07.002.
Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci. 2011; 5: 8. doi: 10.3389/fnsys.2011.00008.
Wimmer I, Zrzavy T, Lassmann H. Neuroinflammatory responses in experimental and human stroke lesions. J Neuroimmunol. 2018; 323: 10-18. doi: 10.1016/j.jneuroim.2018.07.003.
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10(12):1538-43.
Feigin VL, Norrving B, George MG, Foltz JL, Roth GA, Mensah GA. Prevention of stroke: A strategic global imperative. Nat Rev Neurol. 2016; 12(9): 501-12. doi: 10.1038/nrneurol.2016.107.
Askenase MH, Sansing LH. Stages of the inflammatory response in pathology and tissue repair after intracerebral hemorrhage. Semin Neurol. 2016; 36(3): 288-97. doi: 10.1055/s-0036-1582132.
Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 2018; 28(6): 791-805. doi: 10.1111/bpa.12583.
Boehme AK, Ranawat P, Luna J, Kamel H, Elkind MSV. Risk of acute stroke after hospitalization for sepsis: a case-crossover study. Stroke. 2017; 48(3): 574-80. doi: 10.1161/STROKEAHA.116.016162.
Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011; 42(9): 2672-713. doi: 10.1161/STR.0b013e3182299496.
Del Zoppo GJ, Sharp FR, Heiss WD, Albers GW. Heterogeneity in the penumbra. J Cereb Blood Flow Metab. 2011; 31(9): 1836-51. doi: 10.1038/jcbfm.2011.93.
Risitano A, Toni D. Time is brain: Timing of revascularization of brain arteries in stroke. Eur Heart J Suppl. 2020; 22(Suppl L): L155-L159. doi: 10.1093/eurheartj/suaa157.
Brecthel L, Gainey J, Penwell A, Nathaniel TI. Predictors of thrombolysis in the telestroke and non telestroke settings for hypertensive acute ischemic stroke patients. BMC Neurol. 2018; 18(1): 215. doi: 10.1186/s12883-018-1204-3.
Polk SR, Stafford C, Adkins A, Effird J, Colello M, Nathaniel TI. Contraindications with recombinant tissue plasminogen activator (rt-PA) in acute ischemic stroke population. Neurol Psychiatry Brain Res. 2018; 27: 6-11. Doi: 10.1016/j.npbr.2017.11.002
Poupore N, Strat D, Mackey T, Brown K, Snell A, Nathaniel TI. Cholesterol reducer and thrombolytic therapy in acute ischemic stroke patients. Lipids Health Dis. 2020; 19: 84. doi: 10.1186/s12944-020-01270-2
Turc G, Bhogal P, Fischer U, Khatri P, Lobotesis K, Mazighi M, et al. European Stroke Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. J Neurointerv Surg. 2023 Aug;15(8):e8. doi: 10.1136/neurintsurg-2018-014569.
Shugart RM, Poupore N, Moraney RA, Tate M, George K, Brown KS, et al. Improvements and deficits progression among ischemic stroke patients with pre-stroke depression and thrombolytic therapy. Neurol Psychiatry Brain Res. 2020; 37: 43-51. Doi: 10.1016/j.npbr.2020.05.004
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flowin humans: Physiology and clinical implications of autoregulation. Physiol Rev. 2021; 101(4): 1487-559. doi: 10.1152/physrev.00022.2020.
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: Advancing neural stem cell therapy toward clinical application. Neural Regen Res. 2021; 16(1): 80-92. doi: 10.4103/1673-5374.286955.
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus. 2007; 22(5): E2. doi: 10.3171/foc.2007.22.5.3.
Alvis-Miranda HR, Castellar-Leones SM, Moscote-Salazar LR. Intravenous fluid therapy in traumatic brain injury and decompressive craniectomy. Bull Emerg trauma. 2014; 2(1): 3-14.
Hulkower RD, Pollack RM, Zonszein J. Understanding hypoglycemia in hospitalized patients. Diabetes Manag (Lond). 2014; 4(2): 165-176. doi: 10.2217/DMT.13.73.
Gomes GF, Pisani JC, Macedo ED, Campos AC. The nasogastric feeding tube as a risk factor for aspiration and aspiration pneumonia. Curr Opin Clin Nutr Metab Care. 2003; 6(3): 327-33. doi: 10.1097/01.mco.0000068970.34812.8b.
Lee JSW, Kwok T, Chui PY, Ko FWS, Lo WK, Kam WC, et al. Can continuous pump feeding reduce the incidence of pneumonia in nasogastric tube-fed patients? A randomized controlled trial. Clin Nutr. 2010;29(4):453-8. 0
Mrozek S, Vardon F, Geeraerts T. Brain temperature: Physiology and pathophysiology after brain injury. Anesthesiol Res Pract. 2012; 2012: 989487. doi: 10.1155/2012/989487.
Djordjevic A, Srdjenovic B, Seke M, Petrovic D, Injac R, Mrdjanovic J. Review of synthesis and antioxidant potential of fullerenol nanoparticles. J Nanomater. 2015; 2015: 67073. Doi: 0.1155/2015/567073
Rzigalinski BA, Carfagna CS, Ehrich M. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 9(4): 10.1002/wnan.1444. doi: 10.1002/wnan.1444.
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij). 2020; 7: 1849543520970819. doi: 10.1177/1849543520970819.
Duncan PW, Zorowitz R, Bates B, Choi JY, Glasberg JJ, Graham GD, et al. Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke. 2005; 36(9): e100-43. doi: 10.1161/01.STR.0000180861.54180.FF.
Dromerick AW, Edwards DF, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke. 2000; 31(12): 2984-8. doi: 10.1161/01.str.31.12.2984.
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016; 47(6): e98-e169. doi: 10.1161/STR.0000000000000098.
Chen S, Shao L, Ma L. Cerebral edema formation after stroke: emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front Cell Neurosci. 2021; 15: 716825. doi: 10.3389/fncel.2021.716825.
Dostovic Z, Dostovic E, Smajlovic D, Ibrahimagic OC, Avdic L. Brain edema after ischaemic stroke. Med Arch. 2016; 70(5): 339-41. doi: 10.5455/medarh.2016.70.339-341.
Doron O, Zadka Y, Barnea O, Rosenthal G. Interactions of brain, blood, and CSF: a novel mathematical model of cerebral edema. Fluids Barriers CNS. 2021; 18(1): 42. doi: 10.1186/s12987-021-00274-z.
Dóczi T. Volume regulation of the brain tissue-a survey. Acta Neurochir (Wien). 1993; 121(1-2): 1-8. doi: 10.1007/BF01405174.
Michaud M. Brain “Drowns” in Its Own Fluid after a Stroke. University of Rochester Medical Center Rochester; 2020. Cited: 2022 Dec 27. Available from: https://www.urmc.rochester.edu/news/story/brain-drowns-in-its-own-fluid-after-a-stroke
Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation. 2011; 8(1): 147. Doi: 10.1186/1742-2094-8-147.
Downloads
Published
Versions
- 2024-10-03 (2)
- 2024-08-01 (1)
Issue
Section
License
Copyright (c) 2023 Interdisciplinary Journal of Epidemiology and Public Health

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.