Evaluating bacterial resistance to antimicrobials in isolated bacteria from food contact surfaces

Authors

DOI:

https://doi.org/10.18041/1900-3803/entramado.1.7331

Keywords:

Antibiotic resistance, Acetic acid, Resistant bacteria, Sodium hypochlorite, Surfaces, Tetracycline

Abstract

Bacteria isolated from food contact surfaces, can transfer resistance factors when exposed to pressure exerted by inappropriate use of antimicrobial agents. This study aimed to evaluate bacterial resistance against antibiotics and disinfectants commonly used (NaOCl and CH3COOH) in bacteria isolated from food contact surfaces. Additionally, using PCR, the presence of tetracycline resistance genes was evaluated. Results showed that 47% of the isolates exhibit resistance against more than one antibiotic, being Tetracycline the antibiotic that most isolates were resistant to (35.3%). A PCR analysis found that the tet M gene is the most frequent of the genes tested. Likewise, it was evidenced that although NaOCl is effective as a surface disinfectant, Aerococcus urinae and Kocuria kristinae isolates could resist up to 10 min of exposure. Likewise, all isolates were resistant to CH3COOH, demonstrating the low inhibitory capacity of this disinfectant. Finally, the observed correlation between resistance to antibiotics and resistance to disinfectants is confirmed. An important factor that should be studied since the generalized use of disinfectants can increase the spectrum of antibiotic resistance.

Downloads

Download data is not yet available.

Author Biographies

References

ABDALLAH, Marwan; BENOLIEL, Corinne; DRIDER, Djamel; DHULSTER, Pascal; CHIHIP, Nour. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. In: Archives of Microbiology. 2014. vol. 196, no.7, p. 453–472. https://doi.org/10.1007/s00203-014-0983-1

ARIAS, Cesar; MURRAY, Barbara. The rise of the Enterococcus: beyond Vancomycin resistance. In: Nature Reviews Microbiology. 2012. vol. 10, no. 4, p. 266–278. https://doi.org/10.1038/nrmicro2761

AZEVEDO, Inês; ALBANO, Helena; SILVA, Joana; TEIXEIRA, Paula. Antibiotic resistance of Enterobacteriaceae isolated from the domestic food related enviroments. In: Journal of Food Quality and Hazards Control. 2015. vol. 2, no. 2, p. 51–55. http://jfqhc.ssu.ac.ir/article-1-145-en.html

BARTON, Mary. Impact of antibiotic use in the swine industry. In: Current Opinion in Microbiology. 2014. vol. 19, no. 1, p. 9–15. https://doi.org/10.1016/j.mib.2014.05.017

BERNAl, Maye; GUZMÁN, Miguel. El Antibiograma de discos. Normalización de la técnica de Kirby-bauer. En: Biomédica. 1984. vol. 4, p. 3–4. https://doi.org/10.7705/biomedica.v4i3-4.1891

CAPITA, Rosa; ALONSO-CALLEJA, Carlos. Antibiotic-resistant bacteria: A challenge for the Food industry. In: Critical Reviews in Food Science and Nutrition. 2013. vol. 53, no.1, p.11–48 https://doi.org/10.1080/10408398.2010.519837

CARO-HERNÁNDEZ, Paola; TOBAR, Jorge. Análisis microbiológico de superficies en contacto con alimentos. En: Entramado. 2020. vol. 16, no.1, p. 240-249. https://doi.org/10.18041/1900-3803/entramado.1.6126

CHOPRA, Ian; ROBERTS, Marilyn. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. In: Microbiology and Molecular Biology Reviews. 2001. vol. 65, no. 2, p. 232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-Second Informational Supplement. Clinical and Laboratory Standards Institute. 2013. vol. 32, no.3, p. 1-184. https://clsi.org/media/2663/m100ed29_sample.pdf

DAVIN-REGLI, Anne; PAGÈS, Jean-Marie. Cross-resistance between biocides and antimicrobials: an emerging question. In: Revue Scientifique et Technique-OIE. 2012. vol. 31, no.1, p.89–104. https://pubmed.ncbi.nlm.nih.gov/22849270/

DOHERTY, Neil; TRZCINSKI, Krzysztof; PICKERILL, Paul; ZAWADZKI, Piotr DOWSON, Christopher. Genetic Diversity of the tet (M) gene in Tetracycline-resistant clonal lineages of Streptococcus pneumoniae. In: Antimicrobial Agents and Chemotherapy. 2000. vol. 44, no. 11, p. 2979–2984. https://doi.org/10.1128/AAC.44.11.2979-2984.2000

ESCOBEDO, Ana., MENESES, María; CASTRO, Alejandra. Estudio microbiológico (cualitativo y cuantitativo) de superficies inertes que están en contacto con la preparación de alimentos en cafeterías de una universidad pública. En: Revista Electrónica Sobre Cuerpos Académicos y Grupos de Investigación en Iberoamérica. 2016. vol. 3, no. 6, p. 1–29. ISSN: 2448 - 6280 http://cagi.org.mx/index.php/CAGI/article/view/112/168

FLÓREZ, Astrid; RINCÓN, Carmen; GARZÓN, Paola; VARGAS, Nirley; ENRÍQUEZ, Catalina. Factores relacionados con enfermedades transmitidas por alimentos en restaurantes de cinco ciudades de Colombia, 2007. En: Asociación Colombiana de Infectología. 2008. vol. 12, no. 4, p. 255–266. http://www.scielo.org.co/pdf/inf/v12n4/v12n4a04.pdf

FRIEDMAN, Mendel. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. In: Journal of Agricultural and Food Chemistry. 2015. vol. 63, no.15, p. 3805–3822. https://doi.org/10.1021/acs.jafc.5b00778

GOLDSTEIN, Fred ; PEAN, Yves., ROSATO, Antonio., GERTNER, Jacques., GUTMANN, Laurent; ROC, Vigll. Characterization of Ceftriaxone-resistant Enterobacteriaceae: a multicentre study in 26 French hospitals. In: Journal of Antimicrobial Chemotherapy. 1993. vol. 32, no. 4, p. 595–603. https://doi.org/10.1093/jac/32.4.595

GOUSIA, Panagiota; ECONOMOU, Vangelis; BOZIDIS, Petros; PAPADOPOULOU, Chissanthy. Vancomycin-resistance phenotypes, Vancomycin-resistance genes, and resistance to antibiotics of Enterococci isolated from food of animal origin. In: Foodborne Pathogens and Disease. 2015. vol. 12, no. 3, p. 214–220. https://doi.org/10.1089/fpd.2014.1832

HEDAYATIANFARD, Keshvad; AKHLAGHI, Mostafa; Sharifiyazdi, Hassan. Detection of Tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. In: Veterinary Research Forum. 2014. vol. 5, no. 4, p. 269–275. https://pubmed.ncbi.nlm.nih.gov/25610578/

IREDELL, Jhon; BROWN, Jeremy; TAGG, Kaitlin. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. In: British Medical Journal. 2016. vol. 352, no. 1–19. https://doi.org/10.1136/bmj.h6420

JANSEN, Wiebke; MÜLLER, Anja; GRABOWSKI, Nils; KEHRENBERG, Corinna; MUYLKENS, Benoit & DAHOUK, Sascha. Foodborne diseases do not respect borders: zoonotic pathogens and antimicrobial resistant bacteria in food products of animal origin illegally imported into the European Union. In: The Veterinary Journal. 2018. vol. 244, p. 75–82. https://doi.org/10.1016/j.tvjl.2018.12.009

JARA, Maria. Tetraciclinas: Un modelo de resistencia antimicrobiana. En: Ciencias Veterinarias. 2007. vol. 22, no. 1–2, p. 49–55. https://doi.org/10.5354/0716-260X.2007.915

KHAN, Sadia; BEATTIE, Tara; KNAPP, Charles. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. In: Chemosphere. 2016. vol. 152, p. 132–141. https://doi.org/10.1016/j.chemosphere.2016.02.086

LANGIANO, Elisa; FERRARA, María; LANNI, Liana; VISCARDI, Viviana; ABBATECOLA, Angela. Food safety at home: knowledge and practices of consumers. In: Journal of Public Health. 2011. vol. 20, no.1, p. 47–57. https://doi.org/10.1007/s10389-011-0437-z

LI, Qing; CHANG, Weishan; ZHANG, Hongna; HU, Dung; WANG, Xuepeng. The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. In: Frontiers in Microbiology. 2019. vol. 10, no. 633, p.1–8. https://doi.org/10.3389/fmicb.2019.00633

LIAO, Chien; SHOLLENBERGER, Lisa; PHILLIPS, John. Lethal and sublethal action of acetic acid on Salmonella in vitro and on cut surfaces of apple slices. In: Journal of Food Science. 2006. vol. 68. no. 9, p. 2793–2798. https://doi.org/10.1111/j.1365-2621.2003.tb05807.x

LIU, Shan-Shan; QU, Hong; YANG, Dong; HU, Hiu; LIU, Wei; QIU, Zhi; HOU, Ai; GOU, Jianhou; LI, Jun; SHEN, Zhi; JIN, Min. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. In: Water Research. 2018. vol. 1, no. 136, p. 131–136. https://doi.org/10.1016/j.watres.2018.02.036

MARQUES DI PRIMIO, Eliza; DE OLIVEIRA SCHUMACHER, Bianca; PREUSS, Edcarlos; MENEZES, Dulcinéa; ÁVILA, Eliezer; HELBIG, Elizabete. Sensibility and resistance profiles to antibiotics of pathogens isolated in a hospital unit of food and nutrition. In: Acta Scientiarum. Health Sciences. 2017. vol. 39, no. 1, p. 27-31. https://doi.org/10.4025/actascihealthsci.v39i1.28290

MEYGRET, Alexandra; LE ROY, Chloé; RENAUDIN, Hèléne; BÉBÉAR, Cécile; PEREYRE, Sabine. Tetracycline and fluoroquinolone resistance in clinical Ureaplasma spp. and Mycoplasma hominis isolates in France between 2010 and 2015. In: Journal of Antimicrobial Chemotherapy. 2015. vol. 73, no. 10, p. 1–8. https://doi.org/10.1093/jac/dky238

MKHUNGO, Mveli; BAMIKOLE, Ajibola; ADEMOLA, Oluwatosin. Food safety knowledge and microbiological hygiene of households in selected areas of Kwa-Zulu Natal, South Africa. In: Italian Journal of Food Safety. 2018. vol. 7, no. 2, p. 126–130. https://doi.org/10.4081/ijfs.2018.6887

NAKANO, Shigeru; EBISUYA, Hiroaki. Physiology of Acetobacter and Komagataeibacter spp.: acetic acid resistance mechanism in acid acetic fermentation. In: MATSUSHITA, Kasunobu; TOYAMA, Hirohide; TONOUCHI, Naoto; OKAMOTO-KAINUMA, Akiko. Acetic Acid Bacteria. Tokio. Springer, 2016. 223-234 p. https://doi.org/10.1007/978-4-431-55933-7_10

NG, Lai-King., MARTIN, Iain., ALFA, Michelle; MULVEY, Matthew. Multiplex PCR for the detection of Tetracycline resistant genes. In: Molecular and Cellular Probes. 2001. vol. 15, no.4, p. 209–215. https://doi.org/10.1006/mcpr.2001.0363

PAL, Chandan; BENGTSSON-PALME, Johan; KRISTIANSSON, Erik; LARSSON, D. G. Joakin. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. In: BioMed Central Genomics. 2015. vol. 964, p. 1–14. https://doi.org/10.1186/s12864-015-2153-5

PITOUT, Johann; NORDMANN, Patrice; LAUPLAND, Kevin; POIREL, Laurent. Emergence of Enterobacteriaceae producing extended-spectrum b -lactamases (ESBLs) in the community. In: Journal of Antimicrobial Chemotherapy. 2005. vol. 56, No. 1, p. 52–59. https://doi.org/10.1093/jac/dki166

PURTY, Shashikala; SARANATHAN, Rajagopalan; PRASHANTH, K; NARAYANAN, K; ASIR, Johny; SHEELA-SHEELA, Chandrakesan; AMARNATH, Satish-Kumar. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. In: Emerging Microbes & Infections. 2013. Vol 2, No 1, p. 1–8. https://doi.org/10.1038/emi.2013.93

RADCLIFFE, Charlotte; POTOURIDOU, L; QURESHI, Rabia; HABAHBEH, Nidal; QUALTROUGH, Alison; WORTHINGTON, Helen; DRUCKER, David. Antimicrobial activity of varying concentrations of Sodium Hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. In: International Endodontic Journal, 2004. vol. 37, no. 7, p. 438–446. https://doi.org/10.1111/j.1365-2591.2004.00752.x

RAY, Bibek. Methods to detect stressed microorganisms. In: Journal of Food Protection. 1979. vol. 42, no. 4, p. 346–355. https://doi.org/10.4315/0362-028X-42.4.346

ROBERTS, Marily Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. In: Federación Europea de Sociedades de Microbiología Microbiology Reviews. 1996. vol. 19, no.1, p. 1–24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

RUSSELL, Jamen. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. In: Applied and Environmental Microbiology. 1991. vol. 57, no. 1, p. 255–259. https://doi.org/10.1128/aem.57.1.255-259.1991

RUTALA, William; STIEGEL, Marshal; SARUBBI, Felix; WEBER, David. Susceptibility of antibiotic-susceptible and antibiotic-resistant hospital bacteria to disinfectants. In: Infection Control and Hospital Epidemiology. 1997. vol. 18, no.6, p. 417–21. https://doi.org/10.2307/30141249

RUTALA, William; BARBEE, Susan; NEWMAN, Aguiar; SOBSEY, Mark; WEBER, David. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. In: Infection Control and Hospital Epidemiology. 2000. vol. 18, no. 6, p. 417–421. https://doi.org/10.1086/501694

SEIFI, Saeedi; KHOSHBAKHT, Rahem. Prevalence of Tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. In: British Poultry Science. 2016. vol. 57. no.6, p. 1–15. https://doi.org/10.1080/00071668.2016.1232478

SOMMER, Morten; MUNCK, Christian; TOFT-KEHLER, Rasmus; ANDERSSON, Dan. Prediction of antibiotic resistance: time for a new preclinical paradigm? In: Nature Reviews Microbiology. 2017. vol. 15, no. 11, p. 689–696. https://doi.org/10.1038/nrmicro.2017.75

SREY, Sokunrotanak; JAHID, Iqbal; HA, Sang-Do. Biofilm formation in food industries: a food safety concern. In: Food Control. 2013. vol. 31, no. 2, p. 572–585. https://doi.org/10.1016/j.foodcont.2012.12.001

STEWART, Philip. Mechanisms of antibiotic resistance in bacterial biofilms. In: International Journal of Medical Microbiology. 2002. vol.113, no. 2, p. 107–113. https://doi.org/10.1078/1438-4221-00196

TOWNSEND, David; ASHDOWN, Nola; GREED, Lawrence; GRUBB, Warren. Transposition of Gentamicin resistance to staphylococcal plasmids encoding resistance to cationic agents. In: Journal of Antimicrobial Chemotherapy. 1984. vol. 14, no. 2, p. 115–124. https://doi.org/10.1093/jac/14.2.115

VALDIVIEZO-LUGO, Nailec; BETTINAVILLALOBOS de B, Luz; MARTÍNEZ NAZARET, Rosa. Evaluación microbiológica en manipuladores de alimentos de tres comedores públicos en Cumana – Venezuela. En: Revista de la Sociedad Venezolana de Microbiología. 2006. vol. 26, no. 2, p. 389-395. https://www.redalyc.org/articulo.oa?id=199416676006

VELÁSQUEZ-MEZA, María Elena. Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. En: Salud Pública de México. 2005. vol. 47, no. 5, p. 381–387. https://doi.org/10.1590/S0036-36342005000500009

VELIČKOVIĆ-RADOVANOVIĆ, Radmila., STEFANOVIĆ, Nikola., DAMNJANOVIĆ, Ivana., KOCIĆ, Branislava., ANTIĆ, Slobodan., DINIĆ, Miroslav., PETROVIĆ, Jadranka., MITIĆ, Radoslav., CATIĆ-DJORDJEVIĆ, Aleksandra. Monitoring of antibiotic consumption and development of resistance by enterobacteria in a tertiary care hospital. In: Journal of Clinical Pharmacy and Therapeutics. 2015. vol. 40, no. 4, p. 426–430. https://doi.org/10.1111/jcpt.12283

VILLEDIEU, Aurelie; DIAZ-TORRES, Martha; HUNT, Nigel; MCNAB, Rod; SPRATT, David; WILSON, Margarita; MULLANY, Peter. Prevalence of Tetracycline resistance genes in oral bacteria. In: Antimicrobial Agents and Chemotherapy. 2003. vol. 47, no. 3, p. 878-882. https://doi.org/10.1128/AAC.47.3.878-882.2003

WHITE, David; ZHAO, Shaohua; SIMJEE, Shabbir; WAGNER, Davod; MCDERMOTT, Patrick. Antimicrobial resistance of foodborne pathogens. In: Microbes and Infection, 2002. vol. 4, no. 4, p. 405–412. https://doi.org/10.1016/S1286-4579(02)01554-X

Downloads

Published

2022-01-19

Issue

Section

Articles

How to Cite

Evaluating bacterial resistance to antimicrobials in isolated bacteria from food contact surfaces. (2022). Entramado, 18(1), e-7331. https://doi.org/10.18041/1900-3803/entramado.1.7331

Similar Articles

1-10 of 588

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)