Evaluación de la resistencia bacteriana a los antimicrobianos en bacterias aisladas de superficies en contacto con alimentos

Autores/as

DOI:

https://doi.org/10.18041/1900-3803/entramado.1.7331

Palabras clave:

Resistencia a antibióticos, Ácido acético, Bacterias resistentes, Hipoclorito de Sodio, Superficies, Tetraciclina

Resumen

Bacterias aisladas de superficies en contacto con alimentos pueden transferir factores de resistencia cuando se exponen a presiones ejercidas por el uso inadecuado de agentes antimicrobianos. En este estudio se evaluó la resistencia bacteriana frente a antibióticos y desinfectantes de uso común (NaOCl y CH3COOH) en bacterias aisladas de superficies en contacto con alimentos. Adicionalmente, mediante la PCR se evaluó la presencia de genes de resistencia a la Tetraciclina. Los resultados mostraron que el 47% de los aislados presentaron resistencia a más de un antibiótico, siendo la Tetraciclina al que la mayoría de los aislamientos fueron resistentes (35,3%). El análisis de PCR encontró que el gen tet M fue el más frecuente. Además, se evidenció que, si bien el NaOCl es efectivo como desinfectante de superficies, Aerococcus urinae y Kocuria kristinae pudieron resistir hasta 10 minutos de exposición. Igualmente, todos los aislados fueron resistentes a CH3COOH, demostrando la baja capacidad inhibitoria de este desinfectante. Finalmente, se confirma una correlación entre la resistencia a antibióticos y desinfectantes. Un factor importante que conviene estudiar ya que el uso generalizado de desinfectantes podría incrementar el espectro de resistencia a los antibióticos.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

Referencias

ABDALLAH, Marwan; BENOLIEL, Corinne; DRIDER, Djamel; DHULSTER, Pascal; CHIHIP, Nour. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. In: Archives of Microbiology. 2014. vol. 196, no.7, p. 453–472. https://doi.org/10.1007/s00203-014-0983-1

ARIAS, Cesar; MURRAY, Barbara. The rise of the Enterococcus: beyond Vancomycin resistance. In: Nature Reviews Microbiology. 2012. vol. 10, no. 4, p. 266–278. https://doi.org/10.1038/nrmicro2761

AZEVEDO, Inês; ALBANO, Helena; SILVA, Joana; TEIXEIRA, Paula. Antibiotic resistance of Enterobacteriaceae isolated from the domestic food related enviroments. In: Journal of Food Quality and Hazards Control. 2015. vol. 2, no. 2, p. 51–55. http://jfqhc.ssu.ac.ir/article-1-145-en.html

BARTON, Mary. Impact of antibiotic use in the swine industry. In: Current Opinion in Microbiology. 2014. vol. 19, no. 1, p. 9–15. https://doi.org/10.1016/j.mib.2014.05.017

BERNAl, Maye; GUZMÁN, Miguel. El Antibiograma de discos. Normalización de la técnica de Kirby-bauer. En: Biomédica. 1984. vol. 4, p. 3–4. https://doi.org/10.7705/biomedica.v4i3-4.1891

CAPITA, Rosa; ALONSO-CALLEJA, Carlos. Antibiotic-resistant bacteria: A challenge for the Food industry. In: Critical Reviews in Food Science and Nutrition. 2013. vol. 53, no.1, p.11–48 https://doi.org/10.1080/10408398.2010.519837

CARO-HERNÁNDEZ, Paola; TOBAR, Jorge. Análisis microbiológico de superficies en contacto con alimentos. En: Entramado. 2020. vol. 16, no.1, p. 240-249. https://doi.org/10.18041/1900-3803/entramado.1.6126

CHOPRA, Ian; ROBERTS, Marilyn. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. In: Microbiology and Molecular Biology Reviews. 2001. vol. 65, no. 2, p. 232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-Second Informational Supplement. Clinical and Laboratory Standards Institute. 2013. vol. 32, no.3, p. 1-184. https://clsi.org/media/2663/m100ed29_sample.pdf

DAVIN-REGLI, Anne; PAGÈS, Jean-Marie. Cross-resistance between biocides and antimicrobials: an emerging question. In: Revue Scientifique et Technique-OIE. 2012. vol. 31, no.1, p.89–104. https://pubmed.ncbi.nlm.nih.gov/22849270/

DOHERTY, Neil; TRZCINSKI, Krzysztof; PICKERILL, Paul; ZAWADZKI, Piotr DOWSON, Christopher. Genetic Diversity of the tet (M) gene in Tetracycline-resistant clonal lineages of Streptococcus pneumoniae. In: Antimicrobial Agents and Chemotherapy. 2000. vol. 44, no. 11, p. 2979–2984. https://doi.org/10.1128/AAC.44.11.2979-2984.2000

ESCOBEDO, Ana., MENESES, María; CASTRO, Alejandra. Estudio microbiológico (cualitativo y cuantitativo) de superficies inertes que están en contacto con la preparación de alimentos en cafeterías de una universidad pública. En: Revista Electrónica Sobre Cuerpos Académicos y Grupos de Investigación en Iberoamérica. 2016. vol. 3, no. 6, p. 1–29. ISSN: 2448 - 6280 http://cagi.org.mx/index.php/CAGI/article/view/112/168

FLÓREZ, Astrid; RINCÓN, Carmen; GARZÓN, Paola; VARGAS, Nirley; ENRÍQUEZ, Catalina. Factores relacionados con enfermedades transmitidas por alimentos en restaurantes de cinco ciudades de Colombia, 2007. En: Asociación Colombiana de Infectología. 2008. vol. 12, no. 4, p. 255–266. http://www.scielo.org.co/pdf/inf/v12n4/v12n4a04.pdf

FRIEDMAN, Mendel. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. In: Journal of Agricultural and Food Chemistry. 2015. vol. 63, no.15, p. 3805–3822. https://doi.org/10.1021/acs.jafc.5b00778

GOLDSTEIN, Fred ; PEAN, Yves., ROSATO, Antonio., GERTNER, Jacques., GUTMANN, Laurent; ROC, Vigll. Characterization of Ceftriaxone-resistant Enterobacteriaceae: a multicentre study in 26 French hospitals. In: Journal of Antimicrobial Chemotherapy. 1993. vol. 32, no. 4, p. 595–603. https://doi.org/10.1093/jac/32.4.595

GOUSIA, Panagiota; ECONOMOU, Vangelis; BOZIDIS, Petros; PAPADOPOULOU, Chissanthy. Vancomycin-resistance phenotypes, Vancomycin-resistance genes, and resistance to antibiotics of Enterococci isolated from food of animal origin. In: Foodborne Pathogens and Disease. 2015. vol. 12, no. 3, p. 214–220. https://doi.org/10.1089/fpd.2014.1832

HEDAYATIANFARD, Keshvad; AKHLAGHI, Mostafa; Sharifiyazdi, Hassan. Detection of Tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. In: Veterinary Research Forum. 2014. vol. 5, no. 4, p. 269–275. https://pubmed.ncbi.nlm.nih.gov/25610578/

IREDELL, Jhon; BROWN, Jeremy; TAGG, Kaitlin. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. In: British Medical Journal. 2016. vol. 352, no. 1–19. https://doi.org/10.1136/bmj.h6420

JANSEN, Wiebke; MÜLLER, Anja; GRABOWSKI, Nils; KEHRENBERG, Corinna; MUYLKENS, Benoit & DAHOUK, Sascha. Foodborne diseases do not respect borders: zoonotic pathogens and antimicrobial resistant bacteria in food products of animal origin illegally imported into the European Union. In: The Veterinary Journal. 2018. vol. 244, p. 75–82. https://doi.org/10.1016/j.tvjl.2018.12.009

JARA, Maria. Tetraciclinas: Un modelo de resistencia antimicrobiana. En: Ciencias Veterinarias. 2007. vol. 22, no. 1–2, p. 49–55. https://doi.org/10.5354/0716-260X.2007.915

KHAN, Sadia; BEATTIE, Tara; KNAPP, Charles. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. In: Chemosphere. 2016. vol. 152, p. 132–141. https://doi.org/10.1016/j.chemosphere.2016.02.086

LANGIANO, Elisa; FERRARA, María; LANNI, Liana; VISCARDI, Viviana; ABBATECOLA, Angela. Food safety at home: knowledge and practices of consumers. In: Journal of Public Health. 2011. vol. 20, no.1, p. 47–57. https://doi.org/10.1007/s10389-011-0437-z

LI, Qing; CHANG, Weishan; ZHANG, Hongna; HU, Dung; WANG, Xuepeng. The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. In: Frontiers in Microbiology. 2019. vol. 10, no. 633, p.1–8. https://doi.org/10.3389/fmicb.2019.00633

LIAO, Chien; SHOLLENBERGER, Lisa; PHILLIPS, John. Lethal and sublethal action of acetic acid on Salmonella in vitro and on cut surfaces of apple slices. In: Journal of Food Science. 2006. vol. 68. no. 9, p. 2793–2798. https://doi.org/10.1111/j.1365-2621.2003.tb05807.x

LIU, Shan-Shan; QU, Hong; YANG, Dong; HU, Hiu; LIU, Wei; QIU, Zhi; HOU, Ai; GOU, Jianhou; LI, Jun; SHEN, Zhi; JIN, Min. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. In: Water Research. 2018. vol. 1, no. 136, p. 131–136. https://doi.org/10.1016/j.watres.2018.02.036

MARQUES DI PRIMIO, Eliza; DE OLIVEIRA SCHUMACHER, Bianca; PREUSS, Edcarlos; MENEZES, Dulcinéa; ÁVILA, Eliezer; HELBIG, Elizabete. Sensibility and resistance profiles to antibiotics of pathogens isolated in a hospital unit of food and nutrition. In: Acta Scientiarum. Health Sciences. 2017. vol. 39, no. 1, p. 27-31. https://doi.org/10.4025/actascihealthsci.v39i1.28290

MEYGRET, Alexandra; LE ROY, Chloé; RENAUDIN, Hèléne; BÉBÉAR, Cécile; PEREYRE, Sabine. Tetracycline and fluoroquinolone resistance in clinical Ureaplasma spp. and Mycoplasma hominis isolates in France between 2010 and 2015. In: Journal of Antimicrobial Chemotherapy. 2015. vol. 73, no. 10, p. 1–8. https://doi.org/10.1093/jac/dky238

MKHUNGO, Mveli; BAMIKOLE, Ajibola; ADEMOLA, Oluwatosin. Food safety knowledge and microbiological hygiene of households in selected areas of Kwa-Zulu Natal, South Africa. In: Italian Journal of Food Safety. 2018. vol. 7, no. 2, p. 126–130. https://doi.org/10.4081/ijfs.2018.6887

NAKANO, Shigeru; EBISUYA, Hiroaki. Physiology of Acetobacter and Komagataeibacter spp.: acetic acid resistance mechanism in acid acetic fermentation. In: MATSUSHITA, Kasunobu; TOYAMA, Hirohide; TONOUCHI, Naoto; OKAMOTO-KAINUMA, Akiko. Acetic Acid Bacteria. Tokio. Springer, 2016. 223-234 p. https://doi.org/10.1007/978-4-431-55933-7_10

NG, Lai-King., MARTIN, Iain., ALFA, Michelle; MULVEY, Matthew. Multiplex PCR for the detection of Tetracycline resistant genes. In: Molecular and Cellular Probes. 2001. vol. 15, no.4, p. 209–215. https://doi.org/10.1006/mcpr.2001.0363

PAL, Chandan; BENGTSSON-PALME, Johan; KRISTIANSSON, Erik; LARSSON, D. G. Joakin. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. In: BioMed Central Genomics. 2015. vol. 964, p. 1–14. https://doi.org/10.1186/s12864-015-2153-5

PITOUT, Johann; NORDMANN, Patrice; LAUPLAND, Kevin; POIREL, Laurent. Emergence of Enterobacteriaceae producing extended-spectrum b -lactamases (ESBLs) in the community. In: Journal of Antimicrobial Chemotherapy. 2005. vol. 56, No. 1, p. 52–59. https://doi.org/10.1093/jac/dki166

PURTY, Shashikala; SARANATHAN, Rajagopalan; PRASHANTH, K; NARAYANAN, K; ASIR, Johny; SHEELA-SHEELA, Chandrakesan; AMARNATH, Satish-Kumar. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. In: Emerging Microbes & Infections. 2013. Vol 2, No 1, p. 1–8. https://doi.org/10.1038/emi.2013.93

RADCLIFFE, Charlotte; POTOURIDOU, L; QURESHI, Rabia; HABAHBEH, Nidal; QUALTROUGH, Alison; WORTHINGTON, Helen; DRUCKER, David. Antimicrobial activity of varying concentrations of Sodium Hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. In: International Endodontic Journal, 2004. vol. 37, no. 7, p. 438–446. https://doi.org/10.1111/j.1365-2591.2004.00752.x

RAY, Bibek. Methods to detect stressed microorganisms. In: Journal of Food Protection. 1979. vol. 42, no. 4, p. 346–355. https://doi.org/10.4315/0362-028X-42.4.346

ROBERTS, Marily Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. In: Federación Europea de Sociedades de Microbiología Microbiology Reviews. 1996. vol. 19, no.1, p. 1–24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

RUSSELL, Jamen. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. In: Applied and Environmental Microbiology. 1991. vol. 57, no. 1, p. 255–259. https://doi.org/10.1128/aem.57.1.255-259.1991

RUTALA, William; STIEGEL, Marshal; SARUBBI, Felix; WEBER, David. Susceptibility of antibiotic-susceptible and antibiotic-resistant hospital bacteria to disinfectants. In: Infection Control and Hospital Epidemiology. 1997. vol. 18, no.6, p. 417–21. https://doi.org/10.2307/30141249

RUTALA, William; BARBEE, Susan; NEWMAN, Aguiar; SOBSEY, Mark; WEBER, David. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. In: Infection Control and Hospital Epidemiology. 2000. vol. 18, no. 6, p. 417–421. https://doi.org/10.1086/501694

SEIFI, Saeedi; KHOSHBAKHT, Rahem. Prevalence of Tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. In: British Poultry Science. 2016. vol. 57. no.6, p. 1–15. https://doi.org/10.1080/00071668.2016.1232478

SOMMER, Morten; MUNCK, Christian; TOFT-KEHLER, Rasmus; ANDERSSON, Dan. Prediction of antibiotic resistance: time for a new preclinical paradigm? In: Nature Reviews Microbiology. 2017. vol. 15, no. 11, p. 689–696. https://doi.org/10.1038/nrmicro.2017.75

SREY, Sokunrotanak; JAHID, Iqbal; HA, Sang-Do. Biofilm formation in food industries: a food safety concern. In: Food Control. 2013. vol. 31, no. 2, p. 572–585. https://doi.org/10.1016/j.foodcont.2012.12.001

STEWART, Philip. Mechanisms of antibiotic resistance in bacterial biofilms. In: International Journal of Medical Microbiology. 2002. vol.113, no. 2, p. 107–113. https://doi.org/10.1078/1438-4221-00196

TOWNSEND, David; ASHDOWN, Nola; GREED, Lawrence; GRUBB, Warren. Transposition of Gentamicin resistance to staphylococcal plasmids encoding resistance to cationic agents. In: Journal of Antimicrobial Chemotherapy. 1984. vol. 14, no. 2, p. 115–124. https://doi.org/10.1093/jac/14.2.115

VALDIVIEZO-LUGO, Nailec; BETTINAVILLALOBOS de B, Luz; MARTÍNEZ NAZARET, Rosa. Evaluación microbiológica en manipuladores de alimentos de tres comedores públicos en Cumana – Venezuela. En: Revista de la Sociedad Venezolana de Microbiología. 2006. vol. 26, no. 2, p. 389-395. https://www.redalyc.org/articulo.oa?id=199416676006

VELÁSQUEZ-MEZA, María Elena. Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. En: Salud Pública de México. 2005. vol. 47, no. 5, p. 381–387. https://doi.org/10.1590/S0036-36342005000500009

VELIČKOVIĆ-RADOVANOVIĆ, Radmila., STEFANOVIĆ, Nikola., DAMNJANOVIĆ, Ivana., KOCIĆ, Branislava., ANTIĆ, Slobodan., DINIĆ, Miroslav., PETROVIĆ, Jadranka., MITIĆ, Radoslav., CATIĆ-DJORDJEVIĆ, Aleksandra. Monitoring of antibiotic consumption and development of resistance by enterobacteria in a tertiary care hospital. In: Journal of Clinical Pharmacy and Therapeutics. 2015. vol. 40, no. 4, p. 426–430. https://doi.org/10.1111/jcpt.12283

VILLEDIEU, Aurelie; DIAZ-TORRES, Martha; HUNT, Nigel; MCNAB, Rod; SPRATT, David; WILSON, Margarita; MULLANY, Peter. Prevalence of Tetracycline resistance genes in oral bacteria. In: Antimicrobial Agents and Chemotherapy. 2003. vol. 47, no. 3, p. 878-882. https://doi.org/10.1128/AAC.47.3.878-882.2003

WHITE, David; ZHAO, Shaohua; SIMJEE, Shabbir; WAGNER, Davod; MCDERMOTT, Patrick. Antimicrobial resistance of foodborne pathogens. In: Microbes and Infection, 2002. vol. 4, no. 4, p. 405–412. https://doi.org/10.1016/S1286-4579(02)01554-X

Publicado

2022-01-19

Número

Sección

Artículos

Cómo citar

Evaluación de la resistencia bacteriana a los antimicrobianos en bacterias aisladas de superficies en contacto con alimentos. (2022). Entramado, 18(1), e-7331. https://doi.org/10.18041/1900-3803/entramado.1.7331

Artículos similares

21-30 de 588

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a