Los microorganismos solubilizadores de fósforo (MSF )
una alternativa biotecnológica para una agricultura sostenible
Autores/as
- Carlos Omar Patiño Torres Universidad Nacional de Colombia
- Oscar Eduardo Sanclemente Reyes Universidad Nacional Abierta y a Distancia
Palabras clave:
Solubilización de fosfatos, PGPR, biofertilizaciónResumen
El presente artículo pretende revisar de manera detallada la biología de la solubilización de fosfatos en el suelo, efectuada por microorganismos de muy variada taxonomía y estilo de vida, que sirva como marco teórico para el desarrollo de alternativas de biofertilización fosfórica basadas en bioinsumos. Se revisaron diferentes fuentes de información, primarias y secundarias, referidas a los diversos aspectos de la biosolubilización de fósforo en el suelo, con prioridad, aunque no exclusividad, a las publicadas en los últimos quince años. Se muestra una revisión de la dinámica del P en el suelo, la taxonomía de los microorganismos solubilizadores de fósforo, los mecanismos implicados en la solubilización y se hace un análisis crítico de la tecnología a partir de algunos resultados relevantes de ensayos en campo. Se concluye que la solubilización de fosfatos es un proceso de amplia dispersión en los suelos del mundo, cuyas bases biológicas están relativamente bien entendidas, lo que puede apoyar en un futuro inmediato el desarrollo de biotecnologías eficientes y sostenibles para la nutrición fosfórica de los cultivos.
Descargas
Referencias
2. ARAI, Yuji and SPARKS, Donald. Phosphate reaction dynamics in soils and soil components: a multiscale approach. In: Advances in Agronomy, 2007, vol. 94, p. 135-179.
3. ARCHANA, Gayatri; BUCH, A. and KUMAR, Naresh. Pivotal Role of Organic Acid Secretion by Rhizobacteria in Plant Growth Promotion. In: Microorganisms in Sustainable Agriculture and Biotechnology, 2012. p. 35-53.
4. AWASTHI, Rashmi; TEWARI, R. and NAYYAR, Harsh. Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. In: International Research Journal of Microbiology, 2011, vol. 2, no. 12, p. 484-503.
5. AZZIZ, Gaston; BAJSA, Natalia; HAGHJOU, Tandis; TAULÉ, Cecilia, VALVERDE, Ángel and IGUAL, José Mariano. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. In: Appl. Soil Ecol., 2012, vol. 61, p. 320-326.
6. BABANA, A. H. and ANTOUN, Hani. 2007. Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. In: First International Meeting on Microbial Phosphate Solubilization. Springer, 2007. p. 51-58.
7. BOUCHARD, Daniel. Influence des propriétés physicochimiques et biochimiques du sol sur la présence des microorganismes dissolvant le phosphore inorganique. Mémoire de maitrise, Université Laval, 2002. p. 109.
8. BÜNEMANN, Else; PRUSISZ, Bartlomiej and EHLERS, Knut. Characterization of phosphorus forms in soil microorganisms. In: Phosphorus in Action. Springer-Verlag Berlin Heidelberg, 2011, p. 37-57.
9. CHABOT, Rock; ANTOUN, Hani and CESCAS, Michael. Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. In: Can. J. Microbiol., 1993, vol. 39. p. 941-947.
10. CHUANG, Chun Chao, KUO, Yu Lin; CHAO, Chen Ching and CHAO, Wei Liang. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. In: Biol. Fert. Soils, 2007, vol. 43. p. 575-584.
11. COLLAVINO, Mónica; SANSBERRO, Pedro; MROGINSKI, Luis and AGUILAR, Mario. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. In: Biology and Fertility of Soils, 2010, vol. 46, no. 7. p. 727-738.
12. CONDRON, Leo. Phosphorus – surplus and deficiency. In: Managing Soil Quality: Challenges in Modern Agriculture: CAB International, 2004. p. 69-84.
13. GERRETSEN, F. C. The influence of microorganisms on the phosphate intake by the plant. In: Plant Soil, 1948, vol. 1. p. 51-81.
14. GOJON, Alain; NACRY, Philippe and DAVIDIAN, Jean Claude. Root uptake regulation: a central process for NPS homeostasis in plants. In: Current Opinion in Plant Sciences, 2009, vol. 12. p. 328-338.
15. GOLDSTEIN, Alan. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Phosphate in Microorganisms: Cellular and Molecular Biology. ASM Press, Washington, DC, 1996. p. 197-203.
16. GOLDSTEIN, Alan and KRISHNARAJ, P. Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: First International meeting on microbial phosphate solubilization: Springer, Dordrecht, 2007, p. 203–213.
17. GOLDSTEIN, Alan and LIU, S. Molecular cloning and regulation of a mineral phosphate solubilizing (mps) gene from Erwinia herbicola. In: Bio/technology, 1987, vol. 5. p. 72-74.
18. HAN, Hyo-Shim; SUPANJANI, S and LEE, Kyung. Effect of coinoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. In: Plant Soil Environ, 2006, vol. 52, no. 3. p. 130–136.
19. JONES, David and OBURGER, Eva. Solubilization of phosphorus by soil microorganism. In: Phosphorus in Action. Springer- Verlag Berlin Heidelberg, 2011, vol. 26. p. 169–198.
20. KHAN, Mohammad Saghir; ZAIDI, Almas and WANI, Parvaze. Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. In: Agron. Sustain. Dev., 2007, vol. 27. p. 29-43.
21. KHAN, Mohammad Saghir; ZAIDI, Almas; AHEMAD, Munees; OVES, Mohammad and AHMAD, Pervaze. Plant growth promotion by phosphate solubilizing fungi – current perspective. In: Arch Agron Soil Scien, 2010, vol. 56, no. 1. p. 73–98.
22. KUCEY, R. M. and LEGGETT, M. E. 1989. Microbial mediated increases in plant available phosphorus. In: Adv. Agron. 42: p. 199–228.
23. LAMBERS, Hans; FINNEGAN, Patrick; LALIBERTÉ, Etienne; PEARSE, Stuart J.; RYAN, Megan H., SHANE, Michael W. and VENEKLAAS, Erik J. Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? In: Plant Physiology, 2011, vol. 156. p. 1058–1066.
24. LAMBERS, Hans; SHANE, Michael W.; CRAMER, Michael D.; PEARSE, Stuart J. and VENEKLAAS, Erik J. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. In: Annals Bot., 2006, vol. 98. p. 693-713.
25. LEAUNGVUTIVIROJ, Chaveevan; RUANGPHISARN, Pimtida; HANSANIMITKUL, Pikul; SHINKAWA, Hidenori and SASAKI, Ken. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. In: Biosci Biotechnol Biochem., 2010, vol. 74, no. 5. p. 1098-1101.
26. LEGGETT, Mary; CROSS, Jack; HNATOWICH, Garry and HOLLOWAY, Greg. Challenges in commercializing a phosphatesolubilizing microorganism: Penicillium bilaiae, a case history. In: First International Meeting on Microbial Phosphate Solubilization. Springer, 2007. p. 215-222.
27. MARSCHNER, Petra. Plant-microbe interactions in the rhizosphere and nutrient cycling. In: Nutrient cycling in terrestrial ecosystems. Springer-Verlag, Berlin, 2007. p. 159- 181.
28. MCKELVIE, Ian D. Separation, preconcentration and speciation of organic phosphorus in environmental samples In: Organic phosphorus in the environment. CAB International, 2005. p. 1-20.
29. MILLER, Simon; MARK, George, FRANKS, Ashley and O’GARA, Fergal. Pseudomonas-Plant Interactions. In: Pseudomonas: Model organism, pathogen, cell factory. Wiley-VCH Verlag, Weinheim, Germany, 2008. p.353-376.
30. MORENO, Nubia; MORENO RODRÍGUEZ, Luz y URIBE-VÉLEZ, Daniel. Biofertilizantes para la agricultura en Colombia. En: Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Imprenta Denad Internacional, Montevideo, 2007. p. 38-45.
31. MULLEN, Michael. Phosphorus in soils: biological interactions. In: Encyclopedia of Soils in the Environment, Vol.3. Academic Press, Elsevier, Ltd, Oxford, 2005. p: 210-215.
32. NANNIPIERI, Paolo; GIAGNONI, Laura; LANDI, Loretta and RENELLA, Giancarlo. Role of Phosphatase Enzymes in Soil. In: Phosphorus in Action. Springer-Verlag Berlin Heidelberg, 2011, vol. 26. p. 215-243.
33. OBERSON, Astrid and JONER, Emmanuel. Microbial turnover of phosphorus in soil. In: Organic phosphorus in the environment. CAB International, 2005. p. 133-160.
34. PAREDES MENDOZA, Marianela y ESPINOSA, Victoria. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. In: Terra Latinoamericana, 2010, vol. 28, no. 1. p. 61-70.
35. PATEL, Devendra; ARCHANA, Gattupalli and KUMAR, N. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. In: Curr. Micro., 2008, vol. 56. p. 168–174.
36. PIERZYNSKI, Gary; SIMS, J Thomas and VANCE, George. Soils and environmental quality. 3rd ed. CRC Press, Boca Raton, FL, 2005. p. 584.
37. PIGNA, Massimo and VIOLANTE, Antonio. Adsorption of sulfate and phosphate on Andisols. In: Communications in Soil Science and Plant Analysis, 2003, vol. 34, no. 15-16. p. 2099–2113.
38. PRASAD, Rajendra and POWER, James. Phosphorus. In: Soil fertility management for sustainable agriculture. CRC Press LLC, Boca Raton Florida, 1997. p. 171-209.
39. RICHARDSON, Alan; GEORGE, Timothy and RICHARD J Simpson. Utilization of soil organic phosphorus by higher plants. In: Organic phosphorus in the environment. CAB International, 2005. p. 165-184.
40. ROBINSON, David. Integrated root responses to variations in nutrient supply. In: Nutrient acquisition by plants, an ecological perspective. In: Ecological Studies, Vol. 181. Springer-Verlag, Berlin Heidelberg, 2005. p. 43-61.
41. RODRIGUEZ, Hilda and FRAGA, Reynaldo. Phosphate solubilizing bacteria and their role in plant growth promotion. In: Biotechnol. Adv., 1999, vol. 17. p. 319–339.
42. RODRÍGUEZ, Hilda; FRAGA, Reynaldo and BASHAN, Yoav. Genetics of phosphate solubilization and its potential applications for improving plan growth-promoting bacteria. In: Plant Soil, 2006, vol. 56, no. 3. p. 492-504.
43. ROJAS, Johanna y MORENO, Nubia. Producción y formulación de prototipos de un biofertilizante a partir de bacterias nativas asociadas al cultivo de arroz (Oryza sativa). En: Rev. Colomb. Biotecnol., 2008, vol. 10, no. 2. p. 50-62.
44. SASHIDHAR, Burla and PODILE, Appa Rao. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. In: J Appl Microbiol, 2010, vol. 109. p. 1–12.
45. SHARAN, Adhyayan; SHIKHA; SINGH DARMWAL, Nandan and GAUR, Rajeeva. Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline– alkali soils. In: World J. Microbiol Biotech, 2008, vol. 24, no. 6. p. 753-759.
46. SHARPLEY, Andrew. Phosphorus availability. In: Handbook of soil sciences, 2012. vol. 2. p. 11.14 – 11.37.
47. SIMS, J Thomas and VADAS, Peter Alexander. Phosphorus in soils. Overview. In: Encyclopedia of soils in the environment. Vol. 3, Academic Press. 2005. p. 202-210.
48. SINGH, Bijender and SATYANARAYANA, T. Production of phytate-hydrolyzing enzymes by thermophilic moulds. In: African Journal of Biotechnology, 2012, vol. 11, no. 59. p. 12314-12324.
49. SMITH, Frank; MUDGE, Stephen; RAE, Anne and GLASSOP, Donna. Phosphate transport in plants. In: Plant Soil, 2003, vol. 248. p. 71-83.
50. SUPANJANI; SHIM, Hio Shim; JUNG, Jae Sung and LEE, Kiung Dong. Rock phosphate potassium and rock-solbullising bacteria as alternative, sustainable fertilizers. In: Agronomy for Sustainable Development, 2006, vol. 26, no. 4. p. 233-240.
51. TIESSEN, Holm. Phosphorus in the global environment. In: The ecophysiology of plant-phosphorus interactions. Springer, 2008. p. 1-7.
52. TRIVEDI, Pankaj and SA, Tongmin. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. In: Curr. Micro., 2008, vol. 56. p. 140–144.
53. URIBE, Daniel; SÁNCHEZ-NIEVES, Jimena and VANEGAS, Javier. Role of Microbial biofertilizers in the development of a sustainable agriculture in the tropics. In: Soil biology and agriculture in the tropics. Soil Biology 21, Springer-Verlag, Berlin Heidelberg, 2010. p. 235-250.
54. VALVERDE, Angel; BURGOS, Aracely; FISCELLA, Tiziana; RIVAS; Raúl; VELASQUEZ, Encarna, RODRIGUEZ Claudino, CERVANTES, Emilio; CHAMBER; Manuel and IGUAL, José. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. In: First International Meeting on Microbial Phosphate Solubilization. Springer, 2007. p. 43-50.
55. VANCE, Carrol; UHDE–STONE, Claudia and ALLAN, Deborah. Phosphorus acquisition and use: critical adaptations by plants securing a nonrenewable resource. In: New Phytol., 2003, vol. 157. p. 423–447.
56. VIKRAM, Appanna; ALAGAWADI, Ajjanna; KRISHNARAJ, P. U. and KUMAR, Manesh. Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. In: World J. Microbiol. Biotech., 2007, vol. 23. p. 1333–1337.
57. WAKELIN, Steven; WARREN, Rosemary; HARVEY, Paul and RYDER, Maarten. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. In: Biol. Fert. Soils, 2004, vol. 40. p. 36–43.
58. WHITELAW, Melanie Antonine. Growth promotion of plants inoculated with phosphate solubilizing fungi. In: Adv. Agron., 2000, vol. 69. p. 99-151.
59. YI, Yanmei; HUANG, Weiyi and GE, Ying. Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. In: World J. Microbiol. Biotechnol., 2008. p. 1059- 1065.
60. ZAIDI, Almas; KHAN; Mohammad; AHEMAD; Munees; OVES, Mohd and WANI; P. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Microbial strategies for crop improvement. Springer-Verlag, Berlin, 2009. p. 23-50.
61. ZAIDI, Almas; Mohammad and AHMAD, Ees. Microphos: principles, production and application strategies. In: M.S. Khan et al. (eds.), Phosphate Solubilizing Microorganisms, DOI 10.1007/978-3-319-08216-5_1, Springer International Publishing Switzerland, 2014. p. 1-30.
62. KHAN, Mohammad; ZAIDI, Almas and AHMAD, Ees. 2014 Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: M.S. Khan et al. (eds.), Phosphate Solubilizing Microorganisms, DOI 10.1007/978-3-319-08216-5_1, Springer International Publishing Switzerland; 2014. p. 31-62.
63. SAHOO, Hruda and GUPTA, Nibha. 2014. Phosphatesolubilizing fungi: impact on growth and development of economically important plants. In: M.S. Khan et al. (eds.), Phosphate Solubilizing Microorganisms. Available from: http://dx.doi.org/10.1007/978-3-319-08216-5_1 Springer International Publishing Switzerland.