Analysis in reduction of ibuprofen concentration in aqueous solution by means of direct photolysis with LED-Ultraviolet lamps
DOI:
https://doi.org/10.18041/1909-2458/ingeniare.32.8962Keywords:
Emerging Contaminant, Drugs, Ibuprofen, UV LED, Water TreatmentAbstract
In this work, the use of commercial UV LED lamps (395 nm, IP 68 certification, and 0.08 W) was evaluated for the reduction of Ibuprofen (IBP) concentration in an aqueous solution. The measurements of pH and initial concentration of the PPI in the solution were the experimental variables used to determine its effect on the percentage of reduction of the drug. The maximum reduction of PPI concentration reached was 93.64% at initial pH 7 and 20 mg / L of initial PPI concentration, the analysis of the results indicated that the initial pH of the solution does not affect the decrease in PPI concentration, but the pH of the water decreased in each test, which indicates the formation of CO2 and its subsequent dilution in the water, a fact that suggests the mineralization of the IBP. The effect of concentration is relevant until reaching a concentration of 20 mg / L and from this value, the results do not differ, since the number of lamps and reaction time remains constant, in addition, the decrease in pH makes the molecular shape PPI predominates, a fact that affects the degradation path of this pollutant. The energy applied in the analyzed process was 4.8 kWh. The use of commercial UV Led lamps can be an advantage for tertiary wastewater treatment, these lamps are easily available, submersible in water, and lower energy consumption than commercial UV lamps.
Downloads
References
J. Arredondo. “Evaluación del potencial de los humedales construidos como estrategia para la eliminación de productos farmacéuticos y de cuidado personal presentes en aguas residuales domésticas”. Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira, pp. 1-69. [Online]. Disponible en: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/7188/628162A774. pdf?sequence=1&isAllowed=y, 2016.
E.A. Fonseca, R. Directora, E. Pitarch y A. Junio, “Investigación de residuos de plaguicidas y fármacos en aguas medioambientales. Estudio de la eliminación de fármacos en una estación convencional de tratamiento de aguas residuales. doi: 10.6035/14104.2021.711032, 2021.
S. Adityosulindro, C. Julcour, D. Riboul y L. Barthe, “Degradation of ibuprofen by photo-based advanced oxidation processes: exploring methods of activation and related reaction routes”. International Journal of Environmental Science and Technology, no. 0123456789, doi: 10.1007/s13762-021-03372-5, 2021.
M. J. Quero-Pastor, M.C. Garrido-Pérez, A. Acevedo y J.M. Quiroga, “Ozonation of ibuprofen: A degradation and toxicity study,” Science of the Total Environment, vol. 466-467, pp. 957-964, 2014, doi: 10.1016/j.scitotenv.2013.07.067, 2014.
E. Estévez, J.M. Hernández-Moreno, J.R. Fernández-Vera y M.P. Palacios-Díaz, “Ibuprofen adsorption in four agricultural volcanic soils,” Science of the Total Environment, vol. 468-469, pp. 406-414, 2014, doi:10.1016/j.scitotenv.2013.07.068, 2012.
A. Mohamed, A. Salama, W.S. Nasser y A. Uheida, “Photodegradation of Ibuprofen, Cetirizine, and Naproxen by PAN-MWCNT/TiO2–NH2 nanofiber membrane under UV light irradiation”. Environmental Sciences Europe, 30 (1), doi: 10.1186/s12302-018-0177-6, 2018.
Y. Ma, X. Zhang, Z. Zhu, Y. Wang, J. Gao y P. Cui, “Process intensification and waste minimization for ibuprofen synthesis process”. Journal of Cleaner Production, 194, pp. 396-405, doi: 10.1016/j. jclepro.2018.05.131, 2018.
A.F. Suárez-Escobar, L.R. Conde-Rivera, F.E. López-Suárez, M.J. Illán-Gómez, K.S. González- Hernández y J.S. Chalapud-Morales, “Heterogeneous Photocatalytic Degradation of Ibuprofen Over TiO2–Ag Supported on Activated Carbon from Waste Tire Rubber”. Topics in Catalysis, 64 (1-2), pp. 51-64, doi: 10.1007/s11244-020-01311-1, 2021.
Z. Wang, V. Srivastava, I. Ambat, Z. Safaei y M. Sillanpää, “Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process”. Journal of Water Process Engineering, 31, p. 100-808 doi:10.1016/j.jwpe.2019.100808, 2018.
M. Cleuvers, “Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid”. Ecotoxicology and Environmental Safety, 59 (3), pp. 309-315, doi: 10.1016/S0147-6513(03)00141-6. 2004.
L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari y A.H. Mahvi, “Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies”. International Journal of Environmental Science and Technology, 15 (3), pp. 513-524, doi: 10.1007/s13762-017-1393-0, 2018.
S.T.U.H.Y.Y. Naoki. “Short Wavelength LED based on III-V nitride ans its Applications” 21 (3), pp. 490-1312, Accessed: oct. 06, 2021. [Online]. Disponible en: https://www.jstage.jst.go.jp/article/jlve/27/3/27_3_146/_pdf/char/en, 2021.
N. Tran, P. Drogui, L. Nguyen y S.K. Brar, “Optimization of sono-electrochemical oxidation of ibuprofen in wastewater”. Journal of Environmental Chemical Engineering, 3 (4), pp. 2637-2646, doi:10.1016/j.jece.2015.05.001, 2015.
C. Larsen, Z.H. Yu, R. Flick y E. Passeport, “Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems”. Science of The Total Environment, p. 133772, doi:10.1016/j.scitotenv.2019.133772, 2019.
R. López-Serna, E. Posadas, P.A. García-Encina y R. Muñoz, “Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors”. Science of the Total Environment, 662, pp. 32-40, doi:10.1016/j.scitotenv.2019.01.206, 2019.
Y. Feng et al., “Performance and microbial community of an electric biological integration reactor (EBIR) for treatment of wastewater containing ibuprofen”. Bioresource Technology, 274, pp. 447-458, doi:10.1016/j.biortech.2018.12.015, 2018.
Y. Ouarda et al., “Electrochemical treatment of real hospital wastewaters and monitoring of pharmaceutical residues by using surrogate models”. Journal of Environmental Chemical Engineering, p. 103-332 doi:10.1016/j.jece.2019.103332, 2019.
O.S. Bello, O.C. Alao, T.C. Alagbada y A.M. Olatunde, “Biosorption of ibuprofen using functionalized bean husks”. Sustainable Chemistry and Pharmacy, 13, p. 100-151, doi:10.1016/j.scp.2019.100151, 2019.
K. Arola, A. Ward, M. Mänttäri, M. Kallioinen y D. Batstone, “Transport of pharmaceuticals during electrodialysis treatment of wastewater”. Water Research, 161, pp. 496-504, doi: 10.1016/j.watres. 2019.06.031, 2019.
M.J. Quero-Pastor, M.C. Garrido-Pérez, A. Acevedo y J.M. Quiroga, “Ozonation of ibuprofen: A degradation and toxicity study”. Science of The Total Environment, vol. 466–467, pp. 957-964, doi:10.1016/J.SCITOTENV.2013.07.067, 2014.
J. Camilo, C.A. Madera-Parra, A. Caselles-Osorio, W.A. Torres-López y X.M. Vargas-Ramírez, “Ibuprofen and Naproxen removal from domestic wastewater using a Horizontal Subsurface Flow Constructed Wetland coupled to Ozonation”. Ecological Engineering, 135, pp. 89-97, 2019, doi:10.1016/j.ecoleng.2019.05.007, 2018.
S. Adityosulindro et al., “Ultrasonics - Sonochemistry Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water”. Ultrasonics - Sonochemistry, 39, pp. 889-896, doi: 10.1016/j.ultsonch.2017.06.008, 2016.
J.P. Candido, S.J. Andrade, A.L. Fonseca, F.S. Silva, M.R.A. Silva y M.M. Kondo, “Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions”. Environmental Science and Pollution Research, 24 (7), p. 6397, doi: 10.1007/s11356-017-8623-3, 2017.
C. Garcés Giraldo, L. Fernando, M. Franco, E. Alejandro, S. Arango y J. Julián (2004). “La fotocatálisis como alternativa para el tratamiento de aguas residuales”, 1, pp. 83-92, [Online]. Disponible en: http://www.redalyc.org/articulo.oa?id=69511013.
L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari y A.H. Mahvi, “Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies”. International Journal of Environmental Science and Technology, 15 (3), pp. 513- 524, doi: 10.1007/s13762-017-1393-0, 2018.
S. Parraga. “Estudio de las propiedades adsortivas de residuos lignocelulósicos para la eliminación de irgasán, ibuprofeno, amoxicilina y paracetamol presente en residuos líquidos”. Quito, Recuperado en sep. 27, 2021. [Online]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/21344, 2020.
S.P. Cervantes Ramírez, “Evaluación de la remoción de ibuprofeno mediante humedales de flujo subsuperficial horizontal”. Costa Rica, doi: https://hdl.handle.net/2238/6043, 2015.
B. Juliana, C. Romero, C. Paola y M. Rodríguez (2013). “Evaluación de un reactor fotocatalítico solar de película descendente para degradar residuos de acetaminofén con tio 2 soportado”. Cartagena. Recuperado en sep. 28, 2021. [Online]. Disponible en: https://repositorio.unicartagena.edu.co/bitstream/ handle/11227/88/TESIS%20CINDY%20Y%20BRENDA.pdf?sequence=1&isAllowed=y.
D.I. Rojas. “Estudio de la ozonificación continua de un efluente contaminado con productos farmacéuticos: ibuprofeno, diclofenaco y sulfametoxazol”. Quito. Recuperado en sep. 28, 2021. [Online]. Disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/11518/1/CD-6498.pdf, 2015.
S. Luo et al., “UV direct photolysis of sulfamethoxazole and ibuprofen: An experimental and modelling study”. Journal of Hazardous Materials, 343, pp. 132-139, doi: 10.1016/j. jhazmat.2017.09.019, 2018.
S. Adityosulindro, C. Julcour, D. Riboul y L. Barthe, “Degradation of ibuprofen by photo-based advanced oxidation processes: exploring methods of activation and related reaction routes”. International Journal of Environmental Science and Technology, doi: 10.1007/s13762-021-03372-5, 2021.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ingeniare

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.