Principles of clinical medicine for spaceflight: The NASA twin study and further evidence
DOI:
https://doi.org/10.18041/2665-427X/ijeph.1.10641Keywords:
Astronauts, cardiovascular system, genetics, telomeres, microbiome, skin, space diseases, physiological changes, muscle changesAbstract
Background: A vision of space medicine as applied to deep space travel is challenging. As space missions increase in duration in space and extend beyond Earth's orbit, the risks involved in working in these extreme and isolated conditions will also increase. The effects suffered by astronauts in space can be related to two variables: radiation and microgravity. The health hazards range from increased exposure to radiation, decreased body mass, telomere lengthening, genome instability, carotid artery distension, increased intima-media thickness, and changes in the skin microbiome. If an astronaut overcomes a flight in microgravity for 3 to 6 months, he will develop physiological adaptations that lead to orthostatic intolerance. All of the above is necessary to interpret and recognize that zero gravity and a prolonged trip can cause problems in the body of an astronaut yet to be identified.
Objective: To demonstrate the conditions of astronauts in low orbit described by scientific studies in aerospace medicine.
Methods: A literature review was performed, and 58 articles were found from NASA, Pubmed, and Nature Reviews databases. The open-access Mendeley program was used to manage and organize information.
Downloads
References
1. NASA. NASA's Efforts to Increase Diversity in Its Workforce. NASA; 2023. Available from: https://oig.nasa.gov/wp-content/uploads/2024/02/IG-23-011.pdf.
2. Wilson J. NASA History Overview. 2015; cited 2023 Sep 7; Available from: http://www.nasa.gov/content/nasa-history-overview
3. Guéguinou N, Huin-Schohn C, Bascove M, Bueb J-L, Tschirhart E, Legrand-Frossi C, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit?. J Leukoc Biol. 2009; 86(5): 1027-38. doi: 10.1189/jlb.0309167.
4. Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS. Production and action of cytokines in space. Adv Space Res. 1994; 14(8):5-9. doi: 10.1016/0273-1177(94)90380-8.
5. Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med. 2016; 9:383. doi: 10.2147/IJGM.S114188.
6. Oluwafemi FA, Abdelbaki R, Lai JCY, Mora-Almanza JG, Afolayan EM. A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Life Sci Sp Res. 2021; 28: 26-31. Doi: 10.1016/j.lssr.2020.12.002
7. Cranford N, Turner J. The Human Body in Space?. NASA; 2021. Cited: 2023 Sep 7; Available from: http://www.nasa.gov/hrp/bodyinspace
8. Terada M, Seki M, Higashibata A, Yamada S, Takahashi R, Majima HJ, et al. Genetic analysis of the human hair roots as a tool for spaceflight experiments. Adv Biosci Biotechnol. 2013;04(10):75-88. DOI: 10.4236/abb.2013.410A3009
9. Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys. 2007; 46(2): 167-72. doi: 10.1007/s00411-006-0077-9.
10. Jeggo P, Löbrich M. Radiation-induced DNA damage responses. Radiat Prot Dosim. 2006; 122(1-4): 124-7. doi: 10.1093/rpd/ncl495.
11. Nguyen HP, Tran PH, Kim KS, Yang SG. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity. 2021; 7: 44. Doi: 10.1038/s41526-021-00171-1-11.
12. Nicogossian AE, Rummel JD, Leveton L, Teeter R. Development of countermeasures for medical problems encountered in space flight. Adv Space Res. 1992;12(1): 329-37. doi: 10.1016/0273-1177(92)90301-d.
13. Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, et al. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. Clin Neuropsychiatry. 2021; 18(5): 237. doi: 10.36131/cnfioritieditore20210502
14. Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, et al. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal. 2013;11: 32. 10.1186/1478-811X-11-32
15. Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep. 2017; 7: 15376. Doi: 10.1038/s41598-017-15612-1.
16. Datta K, Suman S, Kallakury BVS, Fornace AJ. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One. 2012; 7(8): e42224. doi: 10.1371/journal.pone.0042224.
17. Higashibata A, Hashizume T, Nemoto K, Higashitani N, Etheridge T, Mori C, et al. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ microgravity. 2016;21: 15022. doi: 10.1038/npjmgrav.2015.22.
18. Wolfe JW, Rummel JD. Long-term effects of microgravity and possible countermeasures. Adv Space Res. 1992; 12(1): 281-4. doi: 10.1016/0273-1177(92)90296-a.
19. Ball JR, Evans CH. 3. Managing Risks to Astronaut Health. Safe Passage: Astronaut Care for Exploration Missions. Institute of Medicine; Board on Health Sciences Policy; Committee on Creating a Vision for Space Medicine During Travel; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK223777/
20. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science (80- ). 2019; 364(6436): aau8650. DOI: 10.1126/science.aau8650
21. Hodkinson PD, Anderton RA, Posselt BN, Fong KJ. An overview of space medicine. Br J Anaesth. 2017; 119: i143-53. doi: 10.1093/bja/aex336.
22. Feger BJ, Thompson JW, Dubois LG, Kommaddi RP, Foster MW, Mishra R, et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci Rep. 2016; 6: 34091. Doi: 10.1038/srep34091
23. Nyenhuis SB, Wu X, Strub M-P, Yim Y-I, Stanton AE, Baena V, et al. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature. 2023; 620(7976): 1109-16. Doi: 10.1038/s41586-023-06462-1
24. Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space. J Proteome Res. 2017; 16(7):2623-38. doi: 10.1021/acs.jproteome.7b00201.
25. Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000; 28(9): 1405-20. doi: 10.1016/s0891-5849(00)00215-x.
26. Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak B V., Izyumov DS, Khailova LS, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta. 2010; 1797 (6-7): 878-89. doi: 10.1016/j.bbabio.2010.03.015.
27. Tucker D, Lu Y, Zhang Q. From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol. 2018; 55(6): 5137-53. doi: 10.1007/s12035-017-0712-2.
28. Storm D. NASA's Twins Study Results Published. NASA; 2019. Cited 2023 Sep 8; Available from: http://www.nasa.gov/feature/nasa-s-twins-study-results-published-in-science
29. Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SAR, Mortazavi SMJ. Is Telomere Length a Biomarker of Adaptive Response in Space? Curious Findings from NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng. 2019; 9(3): 381. doi: 10.31661/jbpe.v9i3Jun.1151
30. Wenzel P, Schuhmacher S, Kienhöfer J, Müller J, Hortmann M, Oelze M, et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008; 80(2): 280-9. doi: 10.1093/cvr/cvn182
31. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol. 2000; 150(6): 1283-98. doi: 10.1083/jcb.150.6.1283
32. Britannica. National Aeronautics and Space Administration. US Space Agency & Exploration Achievements. Britannica; 2024. Cited 2023 Sep 7. Available from: https://www.britannica.com/topic/NASA
33. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol. 1996; 81(1): 105-16. doi: 10.1152/jappl.1996.81.1.105.
34. Baran R, Marchal S, Campos SG, Rehnberg E, Tabury K, Baselet B, et al. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines. 2022; 10(1): 59. doi: 10.3390/biomedicines10010059
35. Smith SM, Krauhs JM, Leach CS. Regulation of Body Fluid Volume and Electrolyte Concentrations in Spaceflight. Adv Space Biol Med. 1997; 6: 123-65. doi: 10.1016/s1569-2574(08)60081-7
36. Siamwala JH, Rajendran S, Chatterjee S. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. Vitam Horm. 2015; 99: 249-72. doi: 10.1016/bs.vh.2015.05.004.
37. Meck J V., Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long-vs.-short-duration spaceflight in veteran astronauts. Psychosom Med. 2001;63(6):865-73. doi: 10.1097/00006842-200111000-00003.
38. Arai T, Lee K, Stenger MB, Platts SH, Meck J V., Cohen RJ. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts. Acta Astronaut. 2011; 68(7-8): 770-7. Doi: 10.1016/j.actaastro.2010.10.008
39. Amirova L, Navasiolava N, Rukavishvikov I, Gauquelin-Koch G, Gharib C, Kozlovskaya I, et al. Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Front Physiol. 2020; 11: 395. doi: 10.3389/fphys.2020.00395.
40. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2001; 91(2): 645-53. doi: 10.1152/jappl.2001.91.2.645.
41. Gopalakrishnan R, Genc KO, Rice AJ, Lee SMC, Evans HJ, Maender CC, et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med. 2010; 81(2): 91-102. doi: 10.3357/asem.2583.2010.
42. Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel, Switzerland). 2023;13(2): 576. doi: 10.3390/life13020576.
43. Asch SE, Witkin HA. Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol. 1948; 38(4): 455-77.
44. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012; 27(9): 1896-906. Doi: 10.1002/jbmr.1647
45. Mei XZ, O'Donovan M, Sun L, Young CJ, Ren M, Cao K. Anti-aging potentials of methylene blue for human skin longevity. Sci Rep. 2017; 7(1): 2475. Doi: 10.1038/s41598-017-02419-3
46. Jeong AJ, Kim YJ, Lim MH, Lee H, Noh K, Kim BH, et al. Microgravity induces autophagy via mitochondrial dysfunction in human Hodgkin's lymphoma cells. Sci Rep. 2018; 8(1): 14646. doi: 10.1038/s41598-018-32965-3.
47. Casler JG, Cook JR. Cognitive performance in space and analogous environments. Int J Cogn Ergon. 1999; 3(4): 351-72. doi: 10.1207/s15327566ijce0304_5.
48. Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, et al. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Front Neural Circuits. 2021; 15: 723504. doi: 10.3389/fncir.2021.723504.
49. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018 163. 2018;16(3):143-55. Doi: 10.1038/nrmicro.2017.157
50. Lane HW, Bourland C, Barrett A, Heer M, Smith SM. The Role of Nutritional Research in the Success of Human Space Flight. Adv Nutr. 2013; 4(5): 521-23. doi: 10.3945/an.113.004101
51. Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol. 1999; 276(6 Pt 1): E1014-21. doi: 10.1152/ajpendo.1999.276.6.e1014.
52. Witkin HA, Asch SE. Studies in space orientation; perception of the upright in the absence of a visual field. J Exp Psychol. 1948; 38(5): 603-14. doi: 10.1037/h0055372.
53. Kapoor P, Gaur D. Aeromedical solutions for aerospace safety. Med J Armed Forces India. 2017; 73(4): 384-7. doi: 10.1016/j.mjafi.2017.09.004.
54. Christensen GJM, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014; 5(2): 201-15. doi: 10.3920/BM2012.0062.
55. Tozzo P, Delicati A, Caenazzo L. Skin Microbial Changes during Space Flights: A Systematic Review. Life. 2022; 12(10): 1498. doi: 10.3390/life12101498.
56. Gao H, Weitao T, He Q. Coping with the environment: How microbes survive environmental challenges. Int J Microbiol. 2011; 2011: 379519. doi: 10.1155/2011/37951
57. Tang H, Rising HH, Majji M, Brown RD. Long-Term Space Nutrition: A Scoping Review. Nutrients. 2022;14(1): 194. doi: 10.3390/nu14010194
58. Kahn J, Liverman CT, McCoy MA. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework. Heal Stand Long Durat Explor Spacefl Ethics Princ Responsib Decis Framew. Washington: The National Academy Press; 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25057691/

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Interdisciplinary Journal of Epidemiology and Public Health

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.