Principios de medicina clínica para vuelos espaciales:  el estudio de los gemelos de la nasa y más evidencias

Autores/as

DOI:

https://doi.org/10.18041/2665-427X/ijeph.1.10641

Palabras clave:

Astronautas, sistema cardiovascular, genética, telómeros, microbioma, piel, enfermedades espaciales, cambios fisiológicos, cambios musculares

Resumen

Antecedentes: Una visión de la medicina espacial aplicada a los viajes al espacio profundo es un reto. A medida que las misiones espaciales aumentan su duración en el espacio y se extienden más allá de la órbita de la Tierra, también aumentarán los riesgos que conlleva trabajar en estas condiciones extremas y aisladas.  Los efectos que sufren los astronautas en el espacio los circunscribimos en dos variables; la radiación y la microgravedad. Los peligros para la salud van desde una mayor exposición a la radiación, disminución de la masa corporal, el alargamiento de los telómeros, la inestabilidad del genoma, la distensión de la arteria carótida, el aumento del grosor de la íntima-media, cambios en el microbioma de la piel entre otros. Si un astronauta supera un vuelo en microgravedad de 3 a 6 meses desarrollará adaptaciones fisiológicas que conducen a la intolerancia ortostática. Todo lo anterior es necesario interpretarlo y reconocer que la gravedad cero y un viaje prolongado puede causar problemas en el cuerpo de un astronauta aun por reconocer.

Objetivo: Evidenciar las condiciones de los astronautas en órbita baja descritas por estudios científicos en medicina aeroespacial.

Métodos: Se realizó una revisión bibliográfica y se encontraron 58 documentos. Los artículos fueron obtenidos de las bases de datos NASA, Pubmed, Nature Riviews. Para la gestión y organización de la información se utilizó el programa Mendeley de libre acceso.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

1. NASA. NASA's Efforts to Increase Diversity in Its Workforce. NASA; 2023. Available from: https://oig.nasa.gov/wp-content/uploads/2024/02/IG-23-011.pdf.

2. Wilson J. NASA History Overview. 2015; cited 2023 Sep 7; Available from: http://www.nasa.gov/content/nasa-history-overview

3. Guéguinou N, Huin-Schohn C, Bascove M, Bueb J-L, Tschirhart E, Legrand-Frossi C, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit?. J Leukoc Biol. 2009; 86(5): 1027-38. doi: 10.1189/jlb.0309167.

4. Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS. Production and action of cytokines in space. Adv Space Res. 1994; 14(8):5-9. doi: 10.1016/0273-1177(94)90380-8.

5. Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med. 2016; 9:383. doi: 10.2147/IJGM.S114188.

6. Oluwafemi FA, Abdelbaki R, Lai JCY, Mora-Almanza JG, Afolayan EM. A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Life Sci Sp Res. 2021; 28: 26-31. Doi: 10.1016/j.lssr.2020.12.002

7. Cranford N, Turner J. The Human Body in Space?. NASA; 2021. Cited: 2023 Sep 7; Available from: http://www.nasa.gov/hrp/bodyinspace

8. Terada M, Seki M, Higashibata A, Yamada S, Takahashi R, Majima HJ, et al. Genetic analysis of the human hair roots as a tool for spaceflight experiments. Adv Biosci Biotechnol. 2013;04(10):75-88. DOI: 10.4236/abb.2013.410A3009

9. Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys. 2007; 46(2): 167-72. doi: 10.1007/s00411-006-0077-9.

10. Jeggo P, Löbrich M. Radiation-induced DNA damage responses. Radiat Prot Dosim. 2006; 122(1-4): 124-7. doi: 10.1093/rpd/ncl495.

11. Nguyen HP, Tran PH, Kim KS, Yang SG. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity. 2021; 7: 44. Doi: 10.1038/s41526-021-00171-1-11.

12. Nicogossian AE, Rummel JD, Leveton L, Teeter R. Development of countermeasures for medical problems encountered in space flight. Adv Space Res. 1992;12(1): 329-37. doi: 10.1016/0273-1177(92)90301-d.

13. Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, et al. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. Clin Neuropsychiatry. 2021; 18(5): 237. doi: 10.36131/cnfioritieditore20210502

14. Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, et al. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal. 2013;11: 32. 10.1186/1478-811X-11-32

15. Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep. 2017; 7: 15376. Doi: 10.1038/s41598-017-15612-1.

16. Datta K, Suman S, Kallakury BVS, Fornace AJ. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One. 2012; 7(8): e42224. doi: 10.1371/journal.pone.0042224.

17. Higashibata A, Hashizume T, Nemoto K, Higashitani N, Etheridge T, Mori C, et al. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ microgravity. 2016;21: 15022. doi: 10.1038/npjmgrav.2015.22.

18. Wolfe JW, Rummel JD. Long-term effects of microgravity and possible countermeasures. Adv Space Res. 1992; 12(1): 281-4. doi: 10.1016/0273-1177(92)90296-a.

19. Ball JR, Evans CH. 3. Managing Risks to Astronaut Health. Safe Passage: Astronaut Care for Exploration Missions. Institute of Medicine; Board on Health Sciences Policy; Committee on Creating a Vision for Space Medicine During Travel; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK223777/

20. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science (80- ). 2019; 364(6436): aau8650. DOI: 10.1126/science.aau8650

21. Hodkinson PD, Anderton RA, Posselt BN, Fong KJ. An overview of space medicine. Br J Anaesth. 2017; 119: i143-53. doi: 10.1093/bja/aex336.

22. Feger BJ, Thompson JW, Dubois LG, Kommaddi RP, Foster MW, Mishra R, et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci Rep. 2016; 6: 34091. Doi: 10.1038/srep34091

23. Nyenhuis SB, Wu X, Strub M-P, Yim Y-I, Stanton AE, Baena V, et al. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature. 2023; 620(7976): 1109-16. Doi: 10.1038/s41586-023-06462-1

24. Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space. J Proteome Res. 2017; 16(7):2623-38. doi: 10.1021/acs.jproteome.7b00201.

25. Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000; 28(9): 1405-20. doi: 10.1016/s0891-5849(00)00215-x.

26. Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak B V., Izyumov DS, Khailova LS, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta. 2010; 1797 (6-7): 878-89. doi: 10.1016/j.bbabio.2010.03.015.

27. Tucker D, Lu Y, Zhang Q. From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol. 2018; 55(6): 5137-53. doi: 10.1007/s12035-017-0712-2.

28. Storm D. NASA's Twins Study Results Published. NASA; 2019. Cited 2023 Sep 8; Available from: http://www.nasa.gov/feature/nasa-s-twins-study-results-published-in-science

29. Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SAR, Mortazavi SMJ. Is Telomere Length a Biomarker of Adaptive Response in Space? Curious Findings from NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng. 2019; 9(3): 381. doi: 10.31661/jbpe.v9i3Jun.1151

30. Wenzel P, Schuhmacher S, Kienhöfer J, Müller J, Hortmann M, Oelze M, et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008; 80(2): 280-9. doi: 10.1093/cvr/cvn182

31. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol. 2000; 150(6): 1283-98. doi: 10.1083/jcb.150.6.1283

32. Britannica. National Aeronautics and Space Administration. US Space Agency & Exploration Achievements. Britannica; 2024. Cited 2023 Sep 7. Available from: https://www.britannica.com/topic/NASA

33. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol. 1996; 81(1): 105-16. doi: 10.1152/jappl.1996.81.1.105.

34. Baran R, Marchal S, Campos SG, Rehnberg E, Tabury K, Baselet B, et al. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines. 2022; 10(1): 59. doi: 10.3390/biomedicines10010059

35. Smith SM, Krauhs JM, Leach CS. Regulation of Body Fluid Volume and Electrolyte Concentrations in Spaceflight. Adv Space Biol Med. 1997; 6: 123-65. doi: 10.1016/s1569-2574(08)60081-7

36. Siamwala JH, Rajendran S, Chatterjee S. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. Vitam Horm. 2015; 99: 249-72. doi: 10.1016/bs.vh.2015.05.004.

37. Meck J V., Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long-vs.-short-duration spaceflight in veteran astronauts. Psychosom Med. 2001;63(6):865-73. doi: 10.1097/00006842-200111000-00003.

38. Arai T, Lee K, Stenger MB, Platts SH, Meck J V., Cohen RJ. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts. Acta Astronaut. 2011; 68(7-8): 770-7. Doi: 10.1016/j.actaastro.2010.10.008

39. Amirova L, Navasiolava N, Rukavishvikov I, Gauquelin-Koch G, Gharib C, Kozlovskaya I, et al. Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Front Physiol. 2020; 11: 395. doi: 10.3389/fphys.2020.00395.

40. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2001; 91(2): 645-53. doi: 10.1152/jappl.2001.91.2.645.

41. Gopalakrishnan R, Genc KO, Rice AJ, Lee SMC, Evans HJ, Maender CC, et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med. 2010; 81(2): 91-102. doi: 10.3357/asem.2583.2010.

42. Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel, Switzerland). 2023;13(2): 576. doi: 10.3390/life13020576.

43. Asch SE, Witkin HA. Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol. 1948; 38(4): 455-77.

44. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012; 27(9): 1896-906. Doi: 10.1002/jbmr.1647

45. Mei XZ, O'Donovan M, Sun L, Young CJ, Ren M, Cao K. Anti-aging potentials of methylene blue for human skin longevity. Sci Rep. 2017; 7(1): 2475. Doi: 10.1038/s41598-017-02419-3

46. Jeong AJ, Kim YJ, Lim MH, Lee H, Noh K, Kim BH, et al. Microgravity induces autophagy via mitochondrial dysfunction in human Hodgkin's lymphoma cells. Sci Rep. 2018; 8(1): 14646. doi: 10.1038/s41598-018-32965-3.

47. Casler JG, Cook JR. Cognitive performance in space and analogous environments. Int J Cogn Ergon. 1999; 3(4): 351-72. doi: 10.1207/s15327566ijce0304_5.

48. Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, et al. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Front Neural Circuits. 2021; 15: 723504. doi: 10.3389/fncir.2021.723504.

49. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018 163. 2018;16(3):143-55. Doi: 10.1038/nrmicro.2017.157

50. Lane HW, Bourland C, Barrett A, Heer M, Smith SM. The Role of Nutritional Research in the Success of Human Space Flight. Adv Nutr. 2013; 4(5): 521-23. doi: 10.3945/an.113.004101

51. Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol. 1999; 276(6 Pt 1): E1014-21. doi: 10.1152/ajpendo.1999.276.6.e1014.

52. Witkin HA, Asch SE. Studies in space orientation; perception of the upright in the absence of a visual field. J Exp Psychol. 1948; 38(5): 603-14. doi: 10.1037/h0055372.

53. Kapoor P, Gaur D. Aeromedical solutions for aerospace safety. Med J Armed Forces India. 2017; 73(4): 384-7. doi: 10.1016/j.mjafi.2017.09.004.

54. Christensen GJM, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014; 5(2): 201-15. doi: 10.3920/BM2012.0062.

55. Tozzo P, Delicati A, Caenazzo L. Skin Microbial Changes during Space Flights: A Systematic Review. Life. 2022; 12(10): 1498. doi: 10.3390/life12101498.

56. Gao H, Weitao T, He Q. Coping with the environment: How microbes survive environmental challenges. Int J Microbiol. 2011; 2011: 379519. doi: 10.1155/2011/37951

57. Tang H, Rising HH, Majji M, Brown RD. Long-Term Space Nutrition: A Scoping Review. Nutrients. 2022;14(1): 194. doi: 10.3390/nu14010194

58. Kahn J, Liverman CT, McCoy MA. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework. Heal Stand Long Durat Explor Spacefl Ethics Princ Responsib Decis Framew. Washington: The National Academy Press; 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25057691/

Descargas

Publicado

2025-02-10

Número

Sección

Artículos de Revisión

Cómo citar

Saavedra Torres, J. (2025). Principios de medicina clínica para vuelos espaciales:  el estudio de los gemelos de la nasa y más evidencias. Interdisciplinary Journal of Epidemiology and Public Health, 8(1), e-10641. https://doi.org/10.18041/2665-427X/ijeph.1.10641

Artículos similares

1-10 de 14

También puede Iniciar una búsqueda de similitud avanzada para este artículo.