Principios de medicina clínica para vuelos espaciales: el estudio de los gemelos de la nasa y más evidencias
DOI:
https://doi.org/10.18041/2665-427X/ijeph.1.10641Palabras clave:
Astronautas, sistema cardiovascular, genética, telómeros, microbioma, piel, enfermedades espaciales, cambios fisiológicos, cambios muscularesResumen
Antecedentes: Una visión de la medicina espacial aplicada a los viajes al espacio profundo es un reto. A medida que las misiones espaciales aumentan su duración en el espacio y se extienden más allá de la órbita de la Tierra, también aumentarán los riesgos que conlleva trabajar en estas condiciones extremas y aisladas. Los efectos que sufren los astronautas en el espacio los circunscribimos en dos variables; la radiación y la microgravedad. Los peligros para la salud van desde una mayor exposición a la radiación, disminución de la masa corporal, el alargamiento de los telómeros, la inestabilidad del genoma, la distensión de la arteria carótida, el aumento del grosor de la íntima-media, cambios en el microbioma de la piel entre otros. Si un astronauta supera un vuelo en microgravedad de 3 a 6 meses desarrollará adaptaciones fisiológicas que conducen a la intolerancia ortostática. Todo lo anterior es necesario interpretarlo y reconocer que la gravedad cero y un viaje prolongado puede causar problemas en el cuerpo de un astronauta aun por reconocer.
Objetivo: Evidenciar las condiciones de los astronautas en órbita baja descritas por estudios científicos en medicina aeroespacial.
Métodos: Se realizó una revisión bibliográfica y se encontraron 58 documentos. Los artículos fueron obtenidos de las bases de datos NASA, Pubmed, Nature Riviews. Para la gestión y organización de la información se utilizó el programa Mendeley de libre acceso.
Descargas
Referencias
1. NASA. NASA's Efforts to Increase Diversity in Its Workforce. NASA; 2023. Available from: https://oig.nasa.gov/wp-content/uploads/2024/02/IG-23-011.pdf.
2. Wilson J. NASA History Overview. 2015; cited 2023 Sep 7; Available from: http://www.nasa.gov/content/nasa-history-overview
3. Guéguinou N, Huin-Schohn C, Bascove M, Bueb J-L, Tschirhart E, Legrand-Frossi C, et al. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit?. J Leukoc Biol. 2009; 86(5): 1027-38. doi: 10.1189/jlb.0309167.
4. Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS. Production and action of cytokines in space. Adv Space Res. 1994; 14(8):5-9. doi: 10.1016/0273-1177(94)90380-8.
5. Crucian B, Babiak-Vazquez A, Johnston S, Pierson DL, Ott CM, Sams C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int J Gen Med. 2016; 9:383. doi: 10.2147/IJGM.S114188.
6. Oluwafemi FA, Abdelbaki R, Lai JCY, Mora-Almanza JG, Afolayan EM. A review of astronaut mental health in manned missions: Potential interventions for cognitive and mental health challenges. Life Sci Sp Res. 2021; 28: 26-31. Doi: 10.1016/j.lssr.2020.12.002
7. Cranford N, Turner J. The Human Body in Space?. NASA; 2021. Cited: 2023 Sep 7; Available from: http://www.nasa.gov/hrp/bodyinspace
8. Terada M, Seki M, Higashibata A, Yamada S, Takahashi R, Majima HJ, et al. Genetic analysis of the human hair roots as a tool for spaceflight experiments. Adv Biosci Biotechnol. 2013;04(10):75-88. DOI: 10.4236/abb.2013.410A3009
9. Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys. 2007; 46(2): 167-72. doi: 10.1007/s00411-006-0077-9.
10. Jeggo P, Löbrich M. Radiation-induced DNA damage responses. Radiat Prot Dosim. 2006; 122(1-4): 124-7. doi: 10.1093/rpd/ncl495.
11. Nguyen HP, Tran PH, Kim KS, Yang SG. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity. 2021; 7: 44. Doi: 10.1038/s41526-021-00171-1-11.
12. Nicogossian AE, Rummel JD, Leveton L, Teeter R. Development of countermeasures for medical problems encountered in space flight. Adv Space Res. 1992;12(1): 329-37. doi: 10.1016/0273-1177(92)90301-d.
13. Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, et al. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. Clin Neuropsychiatry. 2021; 18(5): 237. doi: 10.36131/cnfioritieditore20210502
14. Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, et al. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal. 2013;11: 32. 10.1186/1478-811X-11-32
15. Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep. 2017; 7: 15376. Doi: 10.1038/s41598-017-15612-1.
16. Datta K, Suman S, Kallakury BVS, Fornace AJ. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One. 2012; 7(8): e42224. doi: 10.1371/journal.pone.0042224.
17. Higashibata A, Hashizume T, Nemoto K, Higashitani N, Etheridge T, Mori C, et al. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ microgravity. 2016;21: 15022. doi: 10.1038/npjmgrav.2015.22.
18. Wolfe JW, Rummel JD. Long-term effects of microgravity and possible countermeasures. Adv Space Res. 1992; 12(1): 281-4. doi: 10.1016/0273-1177(92)90296-a.
19. Ball JR, Evans CH. 3. Managing Risks to Astronaut Health. Safe Passage: Astronaut Care for Exploration Missions. Institute of Medicine; Board on Health Sciences Policy; Committee on Creating a Vision for Space Medicine During Travel; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK223777/
20. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science (80- ). 2019; 364(6436): aau8650. DOI: 10.1126/science.aau8650
21. Hodkinson PD, Anderton RA, Posselt BN, Fong KJ. An overview of space medicine. Br J Anaesth. 2017; 119: i143-53. doi: 10.1093/bja/aex336.
22. Feger BJ, Thompson JW, Dubois LG, Kommaddi RP, Foster MW, Mishra R, et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci Rep. 2016; 6: 34091. Doi: 10.1038/srep34091
23. Nyenhuis SB, Wu X, Strub M-P, Yim Y-I, Stanton AE, Baena V, et al. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature. 2023; 620(7976): 1109-16. Doi: 10.1038/s41586-023-06462-1
24. Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space. J Proteome Res. 2017; 16(7):2623-38. doi: 10.1021/acs.jproteome.7b00201.
25. Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000; 28(9): 1405-20. doi: 10.1016/s0891-5849(00)00215-x.
26. Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak B V., Izyumov DS, Khailova LS, et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta. 2010; 1797 (6-7): 878-89. doi: 10.1016/j.bbabio.2010.03.015.
27. Tucker D, Lu Y, Zhang Q. From mitochondrial function to neuroprotection-an emerging role for methylene blue. Mol Neurobiol. 2018; 55(6): 5137-53. doi: 10.1007/s12035-017-0712-2.
28. Storm D. NASA's Twins Study Results Published. NASA; 2019. Cited 2023 Sep 8; Available from: http://www.nasa.gov/feature/nasa-s-twins-study-results-published-in-science
29. Welsh J, Bevelacqua JJ, Keshavarz M, Mortazavi SAR, Mortazavi SMJ. Is Telomere Length a Biomarker of Adaptive Response in Space? Curious Findings from NASA and Residents of High Background Radiation Areas. J Biomed Phys Eng. 2019; 9(3): 381. doi: 10.31661/jbpe.v9i3Jun.1151
30. Wenzel P, Schuhmacher S, Kienhöfer J, Müller J, Hortmann M, Oelze M, et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008; 80(2): 280-9. doi: 10.1093/cvr/cvn182
31. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol. 2000; 150(6): 1283-98. doi: 10.1083/jcb.150.6.1283
32. Britannica. National Aeronautics and Space Administration. US Space Agency & Exploration Achievements. Britannica; 2024. Cited 2023 Sep 7. Available from: https://www.britannica.com/topic/NASA
33. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol. 1996; 81(1): 105-16. doi: 10.1152/jappl.1996.81.1.105.
34. Baran R, Marchal S, Campos SG, Rehnberg E, Tabury K, Baselet B, et al. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines. 2022; 10(1): 59. doi: 10.3390/biomedicines10010059
35. Smith SM, Krauhs JM, Leach CS. Regulation of Body Fluid Volume and Electrolyte Concentrations in Spaceflight. Adv Space Biol Med. 1997; 6: 123-65. doi: 10.1016/s1569-2574(08)60081-7
36. Siamwala JH, Rajendran S, Chatterjee S. Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. Vitam Horm. 2015; 99: 249-72. doi: 10.1016/bs.vh.2015.05.004.
37. Meck J V., Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long-vs.-short-duration spaceflight in veteran astronauts. Psychosom Med. 2001;63(6):865-73. doi: 10.1097/00006842-200111000-00003.
38. Arai T, Lee K, Stenger MB, Platts SH, Meck J V., Cohen RJ. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts. Acta Astronaut. 2011; 68(7-8): 770-7. Doi: 10.1016/j.actaastro.2010.10.008
39. Amirova L, Navasiolava N, Rukavishvikov I, Gauquelin-Koch G, Gharib C, Kozlovskaya I, et al. Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Front Physiol. 2020; 11: 395. doi: 10.3389/fphys.2020.00395.
40. Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2001; 91(2): 645-53. doi: 10.1152/jappl.2001.91.2.645.
41. Gopalakrishnan R, Genc KO, Rice AJ, Lee SMC, Evans HJ, Maender CC, et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med. 2010; 81(2): 91-102. doi: 10.3357/asem.2583.2010.
42. Sakharkar A, Yang J. Designing a Novel Monitoring Approach for the Effects of Space Travel on Astronauts' Health. Life (Basel, Switzerland). 2023;13(2): 576. doi: 10.3390/life13020576.
43. Asch SE, Witkin HA. Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol. 1948; 38(4): 455-77.
44. Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res. 2012; 27(9): 1896-906. Doi: 10.1002/jbmr.1647
45. Mei XZ, O'Donovan M, Sun L, Young CJ, Ren M, Cao K. Anti-aging potentials of methylene blue for human skin longevity. Sci Rep. 2017; 7(1): 2475. Doi: 10.1038/s41598-017-02419-3
46. Jeong AJ, Kim YJ, Lim MH, Lee H, Noh K, Kim BH, et al. Microgravity induces autophagy via mitochondrial dysfunction in human Hodgkin's lymphoma cells. Sci Rep. 2018; 8(1): 14646. doi: 10.1038/s41598-018-32965-3.
47. Casler JG, Cook JR. Cognitive performance in space and analogous environments. Int J Cogn Ergon. 1999; 3(4): 351-72. doi: 10.1207/s15327566ijce0304_5.
48. Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, et al. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Front Neural Circuits. 2021; 15: 723504. doi: 10.3389/fncir.2021.723504.
49. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018 163. 2018;16(3):143-55. Doi: 10.1038/nrmicro.2017.157
50. Lane HW, Bourland C, Barrett A, Heer M, Smith SM. The Role of Nutritional Research in the Success of Human Space Flight. Adv Nutr. 2013; 4(5): 521-23. doi: 10.3945/an.113.004101
51. Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol. 1999; 276(6 Pt 1): E1014-21. doi: 10.1152/ajpendo.1999.276.6.e1014.
52. Witkin HA, Asch SE. Studies in space orientation; perception of the upright in the absence of a visual field. J Exp Psychol. 1948; 38(5): 603-14. doi: 10.1037/h0055372.
53. Kapoor P, Gaur D. Aeromedical solutions for aerospace safety. Med J Armed Forces India. 2017; 73(4): 384-7. doi: 10.1016/j.mjafi.2017.09.004.
54. Christensen GJM, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014; 5(2): 201-15. doi: 10.3920/BM2012.0062.
55. Tozzo P, Delicati A, Caenazzo L. Skin Microbial Changes during Space Flights: A Systematic Review. Life. 2022; 12(10): 1498. doi: 10.3390/life12101498.
56. Gao H, Weitao T, He Q. Coping with the environment: How microbes survive environmental challenges. Int J Microbiol. 2011; 2011: 379519. doi: 10.1155/2011/37951
57. Tang H, Rising HH, Majji M, Brown RD. Long-Term Space Nutrition: A Scoping Review. Nutrients. 2022;14(1): 194. doi: 10.3390/nu14010194
58. Kahn J, Liverman CT, McCoy MA. Health Standards for Long Duration and Exploration Spaceflight: Ethics Principles, Responsibilities, and Decision Framework. Heal Stand Long Durat Explor Spacefl Ethics Princ Responsib Decis Framew. Washington: The National Academy Press; 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25057691/
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Interdisciplinary Journal of Epidemiology and Public Health

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.