Impacto de la concentración de suero fetal bovino sobre las células epiteliales dentales
PDF
XML

Palabras clave

Ameloblastos
esmalte dental
medios de cultivo
medio de cultivo libre de suero
proliferación celular Ameloblasts
dental enamel
ulture media
culture media serum-free
cell proliferation Ameloblastos
esmalte dentário
meios de cultura
meio de cultura livre de soro
proliferação celular

Cómo citar

Simancas Escorcia, V., & Diaz Caballero, A. (2019). Impacto de la concentración de suero fetal bovino sobre las células epiteliales dentales. Entramado, 15(1), 276–284. https://doi.org/10.18041/1900-3803/entramado.1.5420

Resumen

El esmalte dental, tejido más duro del cuerpo humano, es formado por medio de la diferenciación de células epiteliales conocidas como ameloblastos. Recientemente, las células epiteliales dentales de incisivo de rata han sido utilizadas como modelo celular de eventos fisiopatológicos durante la formación del esmalte dental. Sin embargo, en función de los eventos estudiados es meritorio comprender su comportamiento, particularmente cuando la concentración del Suero Fetal Bovino (SFB) varia. El propósito de este trabajo es evaluar el impacto de la concentración del SFB sobre el crecimiento, proliferación y supervivencia de las células epiteliales dentales. Células epiteliales dentales fueron cultivadas en DMEM/F12, en presencia y ausencia de SFB. Observaciones morfológicas e inmunohistoquímicos de la actina, vimentina y fibronectina fueron realizados. Los resultados permitieron constatar que la ausencia de SFB afectó negativamente la proliferación de las células epiteliales dentales, pero mantuvo una expresión optima de la actina y vimentina. Se identificó una alteración en la expresión de la fibronectina en las células tratadas en ausencia de SFB. En conclusión, la carencia de SFB disminuyo drásticamente la supervivencia, proliferación y expresión de la fibronectina en las células epiteliales dentales de rata.

https://doi.org/10.18041/1900-3803/entramado.1.5420
PDF
XML

Citas

BERKOVITZ, Barry; HOLLAND, G y MOXHAM, Bernard. Oral Anatomy, Histology and Embryology. S.l.: Mosby/Elsevier. ISBN 978-0-7234-3411-5.

BORI, E et al. Evidence for Bicarbonate Secretion by Ameloblasts in a Novel Cellular Model. In: Journal of Dental Research. 2016. vol. 95, no. 5, pp. 588-596. https://doi.org/10.1177/0022034515625939

BOSKEY, Adele. Bone mineral crystal size. In: Osteoporosis International. 2003. vol. 14, no. 0, pp. 16-21. https://doi.org/10.1007/s00198-003-1468-2

BURNOUF, Thierry et al. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? In: Biomaterials. 2016. vol. 76, pp. 371-387. https://doi.org/10.1016/j.biomaterials.2015.10.065

CHIEGO, Daniel. Essentials of oral histology and embryology: a clinical approach, 4th edition. Bdj. 2013. vol. 215, pp. 55.

FUJII, Sakiko et al. Characterization of human dental pulp cells grown in chemically defined serum-free medium. In: Biomedical Reports. 2018. vol. 8, no. 4, pp. 350-358. https://doi.org/10.3892/br.2018.1066

GSTRAUNTHALER, Gerhard; SEPPI, Thomas y PFALLER, Walter. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic? In: Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 1999. vol. 9, no. 3, pp. 150-172. https://doi.org/10.1159/000016312

GÜRDAL, Mehmet., BARUT SELVER, Özlem; BAYSAL, Kemal y DURAK, Ösmet. Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. In: Cytotechnology. 2018. vol. 70, no. 2, pp. 687-700. https://doi.org/10.1007/s10616-017-0171-7

JOCHEMS, Carlo; VAN DER VALK, Jan; STAFLEU, Frans y BAUMANS, Vera. The use of fetal bovine serum: ethical or scientific problem? In: Alternatives to laboratory animals: ATLA. 2002. vol. 30, no. 2, pp. 219-227. https://doi.org/10.1177/026119290203000208

KAWANO, Shintaro et al. Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on Notch signaling pathway. In: Connective Tissue Research. 2002. vol. 43, no. 2-3, pp. 409-412. https://doi.org/10.1080/03008200290000637.

LEE, James et al. Biological alchemy: engineering bone and fat from fat-derived stem cells. In: Annals of Plastic Surgery. 2003. vol. 50, no. 6, pp. 610-617. https://doi.org/10.1097/01.SAP.0000069069.23266.35

LEI, Shuang; ZHANG, Ying; ZHANG, Kaiqiang; LI, Jian y LIU, Lu. Effects of Fluoride on the Expression of Beclin1 and mTOR in Ameloblasts. In: Cells Tissues Organs. 2015. vol. 200, no. 6, pp. 405-412. https://doi.org/10.1159/000441052.

MUCCI, N et al. Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. In: Theriogenology. 2006. vol. 65, no. 8, pp. 1551-1562. https://doi.org/10.1016/j.theriogenology.2005.08.020.

NISHIKAWA, Masaki et al. An optimal serum-free defined condition for in vitro culture of kidney organoids. In: Biochemical and Biophysical Research Communications. 2018. vol. 501, no. 4, pp. 996-1002. https://doi.org/10.1016/j.theriogenology.2005.08.020

ROOZAFZOON, Reza et al. Dental pulp stem cells differentiation into retinal ganglion-like cells in a three dimensional network. In: Biochemical and Biophysical Research Communications. 2015. vol. 457, no. 2, pp. 154-160. https://doi.org/10.1016/j.bbrc.2014.12.069.

ROTHOVÁ, Michaela; FENG, Jifan; SHARPE, Paul; PETERKOVÁ, Renata y TUCKER, Abigail. Contribution of mesoderm to the developing dental papilla. In: The International Journal of Developmental Biology. 2011. vol. 55, no. 1, pp. 59-64. DOI https://doi.org/10.1387/ijdb.103083mr.

THESLEFF, Irma. Epithelial-mesenchymal signalling regulating tooth morphogenesis. In: Journal of Cell Science. 2003. vol. 116, no. Pt 9, pp. 1647-1648. https://doi.org/10.1242/jcs.00410

VAN DER VALK, J et al. Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. In: Toxicology in vitro: an international journal published in association with BIBRA. 2010. vol. 24, no. 4, pp. 1053-1063. https://doi.org/10.1016/j.tiv.2010.03.016.

WOLFENSON, Haguy., LAVELIN, Irena. y GEIGER, Benjamin. Dynamic regulation of the structure and functions of integrin adhesions. In: Developmental Cell. 2013. vol. 24, no. 5, pp. 447-458. https://doi.org/10.1016/j.devcel.2013.02.012.

YUE, Beatrice. Biology of the Extracellular Matrix: An Overview. In: Journal of glaucoma. 2014. pp. S20-S23. https://doi.org/10.1097/IJG.0000000000000108.

ZHENG, Li et al. The tick tock of odontogenesis. In: Experimental Cell Research. 2014. vol. 325, no. 2, pp. 83-89. https://doi.org/10.1016/j.yexcr.2014.02.007.

ZHENG, Li et al. Circadian rhythms regulate amelogenesis. In: Bone. 2013. vol. 55, no. 1, pp. 158-165. https://doi.org/10.1016/j.bone.2013.02.011.

ZOLLINGER, Alicia y SMITH, Michael. Fibronectin, the extracellular glue. In: Matrix Biology: Journal of the International Society for Matrix Biology. 2017. vol. 60-61, pp. 27-37. https://doi.org/10.1016/j.matbio.2016.07.011.

Descargas

Los datos de descargas todavía no están disponibles.