Metodología para la Medición de Impactos Sociales: Una Aplicación de la Matemática Borrosa
DOI:
https://doi.org/10.18041/2382-3240/saber.2020v15n2.6724Palabras clave:
Impactos sociales, evaluación de impactos ambientales, evaluación de impactos sociales, medición, matemática borrosaResumen
El presente trabajo de investigación propone una herramienta para la medición ex post de impactos sociales basada en conceptos de la matemática borrosa. Aunque este es un campo de investigación en crecimiento, aún se requiere seguir avanzando en el perfeccionamiento de las metodologías existentes y la creación de nuevas, buscando mediciones cada vez más ajustadas a la realidad social, la cual está plagada de incertidumbre y subjetividad. Metodológicamente, se parte de una revisión sistemática de literatura, posteriormente se identifican y analizan las principales propuestas conceptuales en este campo, luego a partir de un ejercicio de síntesis se formula un nuevo concepto de impactos sociales, el cual fue descompuesto en sus variables constitutivas para su operacionalización, tomando estas para la construcción de conjuntos borrosos y finalmente desarrollar el modelo teórico propuesto. El concepto que se propone en este documento sobre impacto social es más completo a los revisados, al representar una síntesis de las variables presentes en cada uno de ellos. El resultado alcanzado representa un avance en este campo, aunque la labor no está finiquitada, se debe avanzar en su validación y en el desarrollo de métodos de medición borrosos ex antes.
Descargas
Referencias
Arce-Gomez, A., Donovan, J., & Bedggood, R. (2015). Social impact assessments: Developing a consolidated conceptual framework. Environmental Impact Assessment Review 50 , 85–94. https://doi.org/10.1016/j.eiar.2014.08.006
Becker, H. A. (2001). Social impact assessment. European Journal of Operational Research 128, 311-321. https://doi.org/10.1016/S0377-2217(00)00074-6
Brouwer, R., & Van Ek, R. (2004). Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands. Ecological Economics 50, 1–21. https://doi.org/10.1016/j.ecolecon.2004.01.020
Burdge, R. J. (2002). Why is social impact assessment the orphan of the assessment process? Impact Assessment and Project Appraisal 20 (1), 3-9. https://doi.org/10.3152/147154602781766799
Burdge, R. J. (2003). The practice of social impact assessment background. Impact Assessment and Project Appraisal 21 (2), 84-88. https://doi.org/10.3152/147154603781766356
Centobelli, P., Cerchione, R., & Esposito, E. (2018). How to deal with knowledge management misalignment: A taxonomy based on a 3D fuzzy methodology. Journal of Knowledge Management.
Cloquell-Ballester, V. A., Cloquell-Ballester, V. A., Monterde-Díaz, R., & Santamarina-Siurana, M. C. (2006). Indicators validation for the improvement of environmental and social impact quantitative assessment. Environmental Impact Assessment Review 26, 79–105. https://doi.org/10.1016/j.eiar.2005.06.002
Contreras, C. (2017). Superar la sostenibilidad urbana: una ruta para Ámerica Latina. Revista Bitácora Urbano Territorial 27 (2), 27-34. https://doi.org/10.15446/bitacora.v27n2.62483
Costa, E., & Pesci, C. (2016). Social impact measurement: why do stakeholders matter? Sustainability Accounting, Management and Policy Journal 7 (1), 99-124. https://doi.org/10.1108/SAMPJ-12-2014-0092
Dendena, B., & Corsi, S. (2015). The Environmental and Social Impact Assessment: a further step towards an integrated assessment process. Journal of Cleaner Production 108, 965-977. https://doi.org/10.1016/j.jclepro.2015.07.110
Dillenburg, S., Greene, T., & Erekson, H. (2003). Approaching Socially Responsible Investment with a Comprehensive Ratings Scheme: Total Social Impact. Journal of Business Ethics 43, 167–177. https://doi.org/10.1023/A:1022987127960
El-Kholy, A. M., El-Shikh, M. Y., & Abd-Elhay, S. (2017). Which fuzzy ranking method is best for maximizing fuzzy net present value? Arabian Journal for Science and Engineering, 42(9), 4079-4098.
Grieco, C., Michelini, L., & Lasevoli, G. (2015). Measuring Value Creation in Social Enterprises: A Cluster Analysis of Social Impact Assessment Models. Nonprofit and Voluntary Sector Quarterly 44 (6), 1173–1193. https://doi.org/10.1177/0899764014555986
Gulakov, I., & Vanclay, F. (2018). Social impact assessment in the Russian Federation: does it meet the key values of democracy and civil society? Impact Assessment and Project Appraisal , 494-505. https://doi.org/10.1080/14615517.2018.1507111
Gulakov, I., Vanclay, F., & Arts, J. (2020). Modifying social impact assessment to enhance the effectiveness of company social investment strategies in contributing to local community development. Impact Assessment and Project Appraisal, 1-15.
He, G., Chai, J., Qin, Y., Xu, Z., & Li, S. (2020). Evaluation of Dam Break Social Impact Assessments Based on an Improved Variable Fuzzy Set Model. Water, 12(4), 970.
Kabir, S., & Papadopoulos, Y. (2018). A review of applications of fuzzy sets to safety and reliability engineering. International Journal of Approximate Reasoning, 100, 29-55.
Karytsas, S., Mendrinos, D., & Karytsas, C. (2020). Measurement methods of socioeconomic impacts of renewable energy projects. IOP Conference Series: Earth and Environmental Science 410(1), 1-13.
Labuschagne, C., & Brent, A. C. (2006). Social Indicators for Sustainable Project and Technology Life Cycle Management in the Process Industry. The International Journal of Life Cycle Assessment 11 (1), 3-15. https://doi.org/10.1065/lca2006.01.233
Labuschagne, C., Brent, A. C., & Claasen, S. J. (2005). Environmental and Social Impact Considerations for Sustainable Project Life Cycle Management in the Process Industry. Corp. Soc. Responsib. Environ. Mgmt. 12, 38–54. https://doi.org/10.1002/csr.76
Liu, Y., Li, F., Wang, Y., Yu, X., Yuan, J., & Wang, Y. (2018). Assessing the environmental impact caused by power grid projects in high altitude areas based on BWM and Vague sets techniques. Sustainability, 10(6), 1768.
Ma, J., & Kremer, G. E. (2016). A sustainable modular product design approach with key components and uncertain endof- life strategy consideration. The International Journal of Advanced Manufacturing Technology, 85(1-4), 741-763.
Maas, K., & Liket, K. (2011). Chapter 8. Social Impact Measurement: Classification of Methods. En R. L. Burritt, S. Schaltegger, M. Bennett, T. Pohjola, & M. Csutora, Environmental Management Accounting and Supply Chain Management (págs. 171-202). New York: Springer Science+Business Media B.V.
Mahmoudi, H., Renn, O., Vanclay, F., Hoffmann, V., & Karami, E. (2013). A framework for combining social impact assessment and risk assessment. Environmental Impact Assessment Review 43, 1–8. https://doi.org/10.1016/j.eiar.2013.05.003
Navarro, I. J., Yepes, V., & Martí, J. V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967.
Nejad, Z. M., & Ghaffari-Hadigheh, A. (2018). A novel DEA model based on uncertainty theory. Annals of Operations Research, 264 (1-2), 367-389.
Parsons, R., Everingham, J. A., & Kemp, D. (2019). Developing social impact assessment guidelines in a pre-existing policy context. Impact Assessment and Project Appraisal, 37 (2), 114-123.
Pérez-Capdevila, J. (2012). Competencias laborales: Remozamiento del concepto, método para valuarlas, medirlas y caracterizar a las personas. Revista Avanzada Científica 15 (1), 1-19. Disponible: https://dialnet.unirioja.es/servlet/articulo?codigo=3920458
Pérez-Capdevila, J. (2014). Aportes teóricos a la Matemática Borrosa. Revista Avanzada Científica 17 (1), 1-9. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=4783036
Singh, P. (2017). Distance and similarity measures for multiple-attribute decision making with dual hesitant fuzzy sets. Computational and Applied Mathematics, 36(1), 111-126.
Solórzano-García, M., Navío-Marco, J., & Ruiz-Gómez, L. M. (2019). Ambiguity in the attribution of social impact: A study of the difficulties of calculating filter coefficients in the SROI method. Sustainability, 11(2), 386.
Soni, V., Singh, S. P., & Banwet, D. K. (2016). Precise decisions in Indian energy sector by imprecise evaluation. International Journal of Energy Sector Management.
Spaapen, J., & Van Drooge, L. (2011). Introducing ‘productive interactions’ in social impact assessment. Research Evaluation 20 (3), 211–218. https://doi.org/10.3152/095820211X12941371876742
The Interorganizational Committee on Principles and Guidelines for Social Impact Assessment. (2003). Principles and guidelines for social impact assessment in the USA. Impact Assessment and Project Appraisal 21 (3), 231-250.
Thies, C., Kieckhäfer, K., Spengler, T. S., & Sodhi, M. S. (2019). Operations research for sustainability assessment of products: A review. European Journal of Operational Research, 274(1), 1-21.
Vanclay, F. (2002). Conceptualising social impacts. Environmental Impact Assessment Review 22, 183– 211. https://doi.org/10.1016/S0195-9255(01)00105-6
Vanclay, F. (2003). International Principles For Social Impact Assessment. Impact Assessment and Project Appraisal 21 (1), 5-12. https://doi.org/10.3152/147154603781766491
Vanclay, F. (2006). Principles for social impact assessment: A critical comparison between the international and US documents. Environmental Impact Assessment Review 26, 3-14. https://doi.org/10.1016/j.eiar.2005.05.002
Vanclay, F. (2020). Reflections on Social Impact Assessment in the 21st century. Impact Assessment and Project Appraisal, 38(2), 126-131.
Vanclay, F., & Esteves, A. M. (2011). Current issues and trends in social impact assessment. New directions in social impact assessment: conceptual and methodological advances, 3-19.
Verduzco-Chávez, B., & Valenzuela, M. B. (2019). La medición a pequeña escala de los impactos sociales de proyectos de energía: Problemas metodológicos e implicaciones de política. Gestión y política pública, 28(2), 377-406.
Wang, X. (2017). Application of fuzzy math in cost estimation of construction project. Journal of Discrete Mathematical Sciences and Cryptography, 20(4), 805-816.
Xiao, F. (2019). EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy. IEEE Transactions on Fuzzy Systems.
Zhu, B., Xu, Z., & Xia, M. (2012). Dual hesitant fuzzy sets. Journal of Applied Mathematics.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2020 Saber, Ciencia y Libertad
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.