Energy analysis of a mobile robotic platform of a differential type
DOI:
https://doi.org/10.18041/1909-2458/ingeniare.32.8963Keywords:
Robotic mobile platform, active disturbance rejection control, non-linear systems, GPI control, trajectory trackingAbstract
Mobile robotics during the last decade has made progress in the development of equipment that manages to perform risky tasks for humans, because its characteristics provide the possibility of exploring unknown places. In order to analyze the energy consumption of the platform, two control strategies were compared, both for position and speed control. The analysis methodology proposes that the platform was exposed to a fifth-order polynomial trajectory, in which both cases had to travel it and demonstrate, based on performance indices, its respective robustness against disturbances in the wheels of the device, as well as that of modifications. percentage to the characteristics of the platform, at the end of the tour by means of the average power theory it was verified which of the two control cases is the most energy efficient.
Downloads
References
H.C. Lamraoui, Z. Qidan y A. Benrabah, “Dynamic velocity tracking control of differential-drive mobile robot based on LADRC”. 2017 IEEE Int. Conf. Real-Time Comput. Robot. RCAR 2017, pp. 633-638, doi: 10.1109/RCAR.2017.8311934, 2018.
H. Sira-Ramírez, A. Luviano-Juárez y J. Cortés-Romero, “Control lineal robusto de sistemas no lineales diferencialmente planos”. Rev. Iberoam. Automática e Informática Ind. RIAI, 8 (1), pp. 14- 28, doi:10.1016/s16977912(11)70004-8, 2011.
Z. Gao, “Active disturbance rejection control: A paradigm shift in feedback control system design”. Proc. Am. Control Conf., pp. 2399-2405, doi: 10.1109/acc.2006.1656579, 2006.
C. Moler, “Matlab” MathWorks, 2018.
D. Hart, Electrónica de potencia. Madrid: Pearson Education, 2001.
C. Wilhelm, M. Allan y H. Robins, Análisis de circuitos, vol. 1, s.f.
A. Rodríguez Mariano, G. Reynoso Meza, D.E. Páramo Calderón, E. Chávez Conde, M.A. García Alvarado y J. Carrillo Ahumada. (2015). “Análisis del desempeño de controladores lineales sintonizados en diferentes estados estacionarios del biorreactor de Cholette mediante técnicas de decisión multi-criterio”. Rev. Mex. Ing. Química, 1 (0), pp. 167-204, [Online]. Disponible en: http://www.redalyc.org/articulo.oa?id=62029966013.
K. Kozłowski,. Robot Motion and Control, vol. 335. London: Springer London, 2006.
C. Vergara-Ramírez, N. Castañeda-Arias y D. Castiblanco-Ávila, “Planeación y seguimiento robusto de trayectorias polinomiales para una plataforma móvil”, 2018.
R.D. Ahmad Abu Hatab, “Dynamic Modelling of Differential-Drive Mobile Robots using Lagrange and Newton-Euler Methodologies: A Unified Framework”. Adv. Robot. Autom., 02 (02), doi: 10.4172/2168-9695.1000107, 2013.
E.H.J.H. Sørensen, Linear Systems Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
M. Sebastián y A. Alvarado, “Modelo matemático de un motor de corriente continua separadamente excitado: control de velocidad por corriente de armadura”. Inst. Ciencias Físicas, Esc. Super. Politécnica del Litoral, 6 (1), pp. 154-161, 2012.
J. Velagic, B. Lacevic y N. Osmic, “Nonlinear Motion Control of Mobile Robot Dynamic Model”. Motion Plan, doi: 10.5772/5997, 2008.
A. Isidori, Nonlinear Control Systems. London: Springer London, 1995.
A. Luviano-Juárez, J. Cortés-Romero y H. Sira-Ramírez, “Robust discrete Generalized Proportional Integral Control: Application in mechanical systems”. Eur. Control Conf. ECC 2009, pp. 3893-3898, doi:10.23919/ecc.2009.7075007, 2014.
P. Jiménez, “Concepts and implementation of PID controllers in a smelting furnace steel”, 506, 2014.
L.F. Lozano-Valencia, L.F. Rodríguez-García y D. Giraldo-Buitrago, “Diseño, implementa-ción y validación de un controlador PID autosintonizado”. TecnoLógicas, 28, p. 33, doi: 10.22430/22565337.12, 2012.
H.K. Manjunatha Reddy, J. Immanuel, C.S. Parvathi, P. Bhaskar y L.S. Sudheer, “Implementation of PID controller in MATLAB for real time DC motor speed control system”. Sensors and Transducers, 126 (3), pp. 110-118, 2011.
Q. Zheng (2009). “On Active Disturbance Rejection Control: Stability Analysis and Applications in Disturbance Decoupling Control”. Dissertation, pp. 1-102, [Online]. Disponible en: http://engagedscholarship. csuohio.edu/etdarchive/324/%0Apapers2://publication/uuid/59393457-288A-4839-8DF1-ECE06E975C36.
X. Li, S. Wang, X. Wang y T. Shi, “Permanent magnet brushless motor control based on ADRC”. MATEC Web Conf., vol. 40, doi: 10.1051/matecconf/20164008003, 2016. [21] R. Song, Y. Li, J. Ruan y J. Huang, “Study on ADRC based mobile robot lateral control”. 2007 IEEE Int. Conf. Robot. Biomimetics, ROBIO, pp. 1190-1193, doi: 10.1109/ROBIO.2007.4522333, 2007.
D. Casas, “Implementación de un control por rechazo activo de perturbaciones (ADRC) en un vehículo de transporte Segway”. Universidad Distrital Francisco José de Caldas, 18AD, s.f.
M. Estrada, “Control de velocidad de un motor serie de CD mediante rechazo activo de perturbaciones”. Universidad Central Marta Abreu de las Villas, 2018.
B.-Z. Guo y Z.-L. Zhao, “Active disturbance rejection control: Theoretical perspectives”. Commun. Inf. Syst., 15 (3), pp. 361-421, doi: 10.4310/cis.2015.v15.n3.a3, 2015.
J. Han, “From PID to Active Disturbance Rejection Control”. IEEE Trans. Ind. Electron., 56 (3), pp. 900-906, doi: 10.1109/TIE.2008.2011621, 2009.
H.E. Espitia y J.I. Sofrony, “Path planning of mobile robots using potential fields and swarms of Brownian particles”. 2011 IEEE Congr. Evol. Comput. CEC 2011, vol. 22, pp. 123-129, doi: 10.1109/CEC.2011.5949608, 2011.
J.-H. Urrea-Quintero, N. Muñoz-Galeano y J.M. López-Lezama, “Robust Control of Shunt Active Power Filters: A Dynamical Model-Based Approach with Verified Controllability”. Energies, 13 (23),p. 6253, doi: 10.3390/en13236253, 2020.
Z. Gao, “Scaling and Bandwidth-Parameterization based Controller Tuning”. Proc. Am. Control Conf., vol. 6, pp. 4989-4996, doi: 10.1109/acc.2003.1242516, 2003.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ingeniare

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.