Delay assessment of construction site activities using Bayesian Networks: Case study

Authors

DOI:

https://doi.org/10.18041/1900-3803/entramado.2.8006

Keywords:

Bayesian networks, Delay factors, Artificial intelligence, Construction management

Abstract

The concurrence of multiple factors adversely affects construction project performance, resulting in delays.  Mitigating such factors is challenging for the industry because solutions must include dependence and influence.  Hence, managers must consider their systemic and integrated influence on the construction process for tracking projects.  This study aimed to evaluate the influence of delay factors on the duration of construction site activities using Bayesian network techniques.  Based on the design-based research methodology and the application in a case study, this study proposed a method that involves three steps.  First, identifying the main delay factors affecting construction activities; second, designing an influencing model as a Bayesian network; and third, estimating the integrated influence of such factors by simulating the Bayesian network.  The results showed how a Bayesian network could support the construction team in managing the construction-site activities and making decisions about the performance of the construction process.

Downloads

Download data is not yet available.

Author Biographies

  • Guillermo Mejía-Aguilar, Universidad Industrial de Santander, Bucaramanga -Colombia

    Civil Engineer, with doctorate studies in construction project management from the University of Alabama -USA. Former Fulbrigth scholar. Professor at the School of Civil Engineering of the Universidad Industrial de Santander, Bucaramanga - Colombia. Associate Researcher, system of the Ministry of Science of Colombia; linked to the Research Group in Materials and Building Structures (INME) of the School of Civil Engineering UIS. Areas of research and teaching performance: a) analysis and improvement of construction processes; b) analysis and improvement of control systems for construction projects; and c) analysis and improvement of methodologies for teaching and learning in construction engineering. Member and Education Director of the Association for the Advancement of Cost Engineering AACE -Colombia. Academic Director of AACE Latin America Region. Member of the Santandereana Society of Engineers SSI.

  • Jaime Andrés Gutiérrez-Prada, Universidad Industrial de Santander (UIS), Bucaramanga -Colombia

    Civil Engineer and candidate for a Master's Degree in Civil Engineering from the Universidad Industrial de Santander (UIS), Bucaramanga - Colombia. Researcher endorsed by the Research Group on Construction Materials and Structures (INME) of the School of Civil Engineering UIS.

  • Oscar Portilla-Carreño

    Civil Engineer and candidate for a Master's degree in Civil Engineering from Universidad Industrial de Santander (UIS), Bucaramanga, Santander. Colombia Researcher endorsed by the Research Group in Construction Materials and Structures (INME) of the School of Civil Engineering UIS. Member of the Santander Society of Engineers SSI.

  • Brayan Medina-Martínez, Universidad Industrial de Santander (UIS), Bucaramanga - Colombia.

    Civil Engineer and candidate for a Master's Degree in Civil Engineering at the Universidad Industrial de Santander (UIS), Bucaramanga - Colombia. Researcher endorsed by the Research Group in Materials and Building Structures (INME) of the School of Civil Engineering UIS. 

References

ABBASNEZHAD, Kiazad; ANSARI, Ramin y MAHDIKHANI, Mahdi. Schedule risk assessments using a precedence network: an object-oriented bayesian approach. En: Iranian Journal of Science and Technology, Transactions of Civil Engineering. 23, noviembre, 2020. No. 46 p. 1737-1753 https://doi.org/10.1007/s40996-020-00550-2. ISSN 2364-1843.

AFORLA Bright; WOODE, Anthony y AMOAH, David Kwame. Causes of delays in highway construction projects in Ghana. In: Civil and Environmental Research. 2016. vol. 8, no. 11 p. 69-76. https://www.iiste.org/Journals/index.php/CER/article/view/33879

AHMADU, Hassan Adaviriku; IBRAHIM, Ahmed Doko; IBRAHIM, Yahaya Makarfi y ADOGBO, Kulomri. Incorporating aleatory and epistemic uncertainties in the modelling of construction duration. En: Engineering, Construction and Architectural Management. 27, abril, 2020. vol. 27, no. p. 2199-2219. https://doi.org/10.1108/ecam-06-2019-0304.

AIBINU, Ajibade Ayodeji y ODEYINKA, Henry Agboola. Construction Delays and Their Causative Factors in Nigeria. En: Journal of Construction Engineering and Management. Julio, 2006. vol. 132, no. 7 , p. 667-677. https://doi.org/10.1061/(asce)0733-9364(2006)132:7(667)

AMOATEY, Charles Teye y ANKRAH, Alfred Nii Okanta. Exploring critical road project delay factors in Ghana. En: Journal of Facilities Management. 15, mayo, 2017. vol. 15, no. 2, p. 110-127. https://doi.org/10.1108/jfm-09-2016-0036.

ANKAN, Ankur y PANDA, Abinash. pgmpy: Probabilistic Graphical Models using Python. En: Python in Science Conference (Austin, Texas). SciPy, 2015 https://doi.org/10.25080/majora-7b98e3ed-001

ASIEDU, Richard Ohene y GYADU-ASIEDU, William. Assessing the predictability of construction time overruns using multiple linear regression and Markov chain Monte Carlo. En: Journal of Engineering, Design and Technology. 4, noviembre, 2019. vol. 18, no. 3, p. 583-600. https://doi.org/10.1108/jedt-06-2019-0160

ASSAF, Sadi A. y AL-HEJJI, Sadiq. Causes of delay in large construction projects. En: International Journal of Project Management. Mayo, 2006. vol. 24, no. 4 p. 349-357. https://doi.org/10.1016/j.ijproman.2005.11.010

BAYESFUSION. GeNIe Modeler – BayesFusion. BayesFusion . (1998). https://www.bayesfusion.com/genie/

BOHÓRQUEZ-CASTELLANOS, Jherson Jhadir; PORRAS-DÍAZ, Hernán; SÁNCHEZ-RIVERA,Omar Giovanny; MARIÑO-ESPINEL, María Camila.Planificación de recursos humanos a partir de la simulación del proceso constructivo en modelos BIM 5D En: Entramado. Enero - Junio, 2018. vol. 14, no. 1, p. 252-267 https://doi.org/10.18041/entramado.2018v14n1.27141

CANO, A. Home Page Elvira System. (2001). https://leo.ugr.es/elvira/

CARON, Franco; RUGGERI, Fabrizio y PIERINI, Beatrice. A Bayesian approach to improving estimate to complete. En: International Journal of Project Management. Noviembre, 2016. vol. 34, no. 8, p. 1687-1702. https://doi.org/10.1016/j.ijproman.2016.09.007

CHANG, Andrew Shing-Tao. Reasons for Cost and Schedule Increase for Engineering Design Projects. En: Journal of Management in Engineering. Enero, 2002. vol. 18, no. 1, p. 29-36. https://doi.org/10.1061/(asce)0742-597x(2002)18:1(29)

CHEN, Long, et al. Bayesian Monte Carlo Simulation–Driven Approach for Construction Schedule Risk Inference. En: Journal of Management in Engineering. Marzo, 2021. vol. 37, no. 2, p. 04020115. https://doi.org/10.1061/(asce)me.1943-5479.0000884

CHEN, Zhi; DEMEULEMEESTER, Erik;BAI, Sijun y GUO, Yuntao. A Bayesian approach to set the tolerance limits for a statistical project control method. En: International Journal of Production Research. 27, junio, 2019. vol. 58, no. 10, p. 3150-3163. https://doi.org/10.1080/00207543.2019.1630766

CHO, Sungbin y COVALIU, Zvi. Sequential estimation and crashing in PERT networks with statistical dependence. En: International Journal of Industrial Engineering: Theory Applications and Practice. Diciembre, 2003. vol. 10, no. 4, p. 391-399.

CHOWDHARY, K. R. Fundamentals of Artificial Intelligence. New Delhi: Springer India, 2020. Disponible en Internet: https://doi.org/10.1007/978-81-322-3972-7

CONTRALORÍA GENERAL DE LA NACIÓN. En riesgo 103 obras del Fondo de Adaptación por $ 561 mil millones - Informes - Contraloría General de la República. (2020). https://www.contraloria.gov.co/resultados/informes?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=/asset_publisher/view_content&_101_assetEntryId=2056247&_101_type=content&_101_urlTitle=eltiempo-com-en-riesgo-103-obras

DEMSAR, J; CURK, T; ERJAVEC, A; GORUP C; HOCEVAR, T; MILUTINOVIC, M; MOZINA, M; POLAJNAR, M; TOPLAK, M; STARIC, A; STAJDOHAR, M; UMEK, L; ZAGAR, L; ZBONTAR, J; ZITNIK, M y ZUPAN, B Orange: Data Mining Toolbox in Python De:, Journal of Machine Learning Research. Agosto, 2013, p. 2349−2353. Orange: Data Mining Toolbox in Python

EDWARDS, Leslie. Practical risk management in the construction industry En: Thomas Telford Publishing, 1995 https://doi.org/10.1680/prmitci.20641

ENSHASSI, Adnan; MOHAMED, Sherif y ABUSHABAN, Saleh. FACTORS AFFECTING THE PERFORMANCE OF CONSTRUCTION PROJECTS IN THE GAZA STRIP. En: JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT. 30, junio, 2009. vol. 15, no. 3, p. 269-280. https://doi.org/10.3846/1392-3730.2009.15.269-280

ESHTEHARDIAN, Ehsan y KHODAVERDI, Saeed. A Multiply Connected Belief Network approach for schedule risk analysis of metropolitan construction projects. En: Civil Engineering and Environmental Systems. 26, mayo, 2016. vol. 33, no. 3 , p. 227-246. https://doi.org/10.1080/10286608.2016.1184492

FENTON, Norman y NEIL, Martin. Bayesian Network Software | AgenaRisk. (2018). https://www.agenarisk.com/

FITZSIMMONS, John; HONG, Ying y BRILAKIS, Ioannis. Improving Construction Project Schedules before Execution. En: 37th International Symposium on Automation and Robotics in Construction (27-29, octubre, 2020: Kitakyushu, Japan). International Association for Automation and Robotics in Construction (IAARC), 2020 https://doi.org/10.22260/isarc2020/0157

GARDONI, Paolo; REINSCHMIDT, Kenneth F. y KUMAR, Ramesh. A Probabilistic Framework for Bayesian Adaptive Forecasting of Project Progress. En: Computer-Aided Civil and Infrastructure Engineering. Abril, 2007. vol. 22, no. 3, p. 182-196. https://doi.org/10.1111/j.1467-8667.2007.00478.x

GONDIA, Ahmed; SIAM, Ahmad; EL-DAKHAKHNI, Wael y NASSAR, Ayman. Machine Learning Algorithms for Construction Projects Delay Risk Prediction. En: Journal of Construction Engineering and Management. Enero, 2020. vol. 146, no. 1, p. 04019085. https://doi.org/10.1061/(asce)co.1943-7862.0001736

GONZÁLES, Rafael y QUIMBAYA, Alexandra. La investigación científica basada en el diseño como eje de proyectos de investigación en ingeniería. En: Conference: Reunión Nacional ACOFI (12, septiembre, 2012: Medellín, Colombia).

HAN, Wenming y TONG, Di. Research on Detection and Resolution of Resource Conflict of Virtual Cell Considering New Task Insertion. En: MATEC Web of Conferences. 2015. vol. 22, p. 01046. https://doi.org/10.1051/matecconf/20152201046

HEVNER,Alan; March, Salvatore; PARK, Jinsoo y RAM, Sudha . Design Science in Information Systems Research. En: MIS Quarterly. 2004. vol. 28, no. 1, p. 75. https://doi.org/10.2307/25148625

Hugin Expert A/S. Hugin software (1998). https://www.hugin.com/

JOHANNESSON, Paul y PERJONS, Erik. An Introduction to Design Science. Cham: Springer International Publishing, 2021 https://doi.org/10.1007/978-3-030-78132-3

JOKOWAHYUADI, Tri; F, Fahirah y ANWAR, Nadjadji. Probabilistic prediction of time performance in building construction project using Bayesian Belief Networks-Markov Chain. En: ARPN Journal of Engineering and Applied Sciences. Agosto, 2016. vol. 11, no. 15, p. 9454-9460. https://www.researchgate.net/publication/307568315_Probabilistic_prediction_of_time_performance_in_building_construction_project_using_Bayesian_Belief_Networks-Markov_Chain

KANAPECKIENE, L; KAKLAUSKAS, A; ZAVADSKAS, E y SENIUT, M et al. Integrated knowledge management model and system for construction projects. En: Engineering Applications of Artificial Intelligence. Octubre, 2010. vol. 23, no. 7, p. 1200-1215. https://doi.org/10.1016/j.engappai.2010.01.030

KHODAKARAMI, Vahid; FENTON, Norman y NEIL, Martin. Project Scheduling: Improved Approach to Incorporate Uncertainty Using Bayesian Networks. En: Project Management Journal. Junio, 2007. vol. 38, no. 2, p. 39-49. https://doi.org/10.1177/875697280703800205

KIM, Byung-cheol y REINSCHMIDT, Kenneth F. Probabilistic Forecasting of Project Duration Using Bayesian Inference and the Beta Distribution. En: Journal of Construction Engineering and Management Marzo, 2009. vol. 135, no. 3, p. 178-186. https://doi.org/10.1061/(asce)0733-9364(2009)135:3(178)

LUO, Lan; ZHANG, Limao y WU, Guangdong. BAYESIAN BELIEF NETWORK-BASED PROJECT COMPLEXITY MEASUREMENT CONSIDERING CAUSAL RELATIONSHIPS. En: JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT. 21, febrero, 2020. vol. 26, no. 2 , p. 200-215. Disponible en Internet: https://doi.org/10.3846/jcem.2020.11930

LUU, Van Truong, et al. Quantifying schedule risk in construction projects using Bayesian belief networks. En: International Journal of Project Management. Enero, 2009. vol. 27, no. 1, p. 39-50. https://doi.org/10.1016/j.ijproman.2008.03.003.

MARCH, Salvatore T. y SMITH, Gerald F. Design and natural science research on information technology. En: Decision Support Systems . Diciembre, 1995. vol. 15, no. 4, p. 251-266. Disponible en Internet: https://doi.org/10.1016/0167-9236(94)00041-2

MEJÍA, Guillermo; SÁNCHEZ, Omar; CASTAÑEDA, Karen, y PELLICER, Eugenio. Delay causes in road infrastructure projects in developing countries. En: Revista de la construction. Agosto, 2020. vol. 19, no. 2, p. 220-234. https://doi.org/10.7764/rdlc.19.2.220-234

MICÁN, C. A.; JIMENEZ, V.; PEREZ, J Y BORRERO, J Schedule risk analysis in construction project using RFMEA and Bayesian networks: The Cali-Colombia case study. En: 2013 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (10-13, diciembre, 2013: Bangkok, Thailand) IEEE, 2013 https://doi.org/10.1109/ieem.2013.6962445

MO, Jun-Wen. Model for Construction Project Scheduling and Updating Considering the Dependent Randomness of Activities. En: 2007 International Conference on Wireless Communications, Networking and Mobile Computing [en línea] (21-25, septiembre, 2007: Shanghai, China). IEEE, 2007 https://doi.org/10.1109/wicom.2007.1267

MO, JunWen; ZHAO, Zhe. Using Hybrid Bayesian Networks to Model Dependent Project Scheduling Networks. In: 2008 Fourth International Con- ference on Natural Computation (18-20, October, 2008: Jinan, Shandong, China). IEEE, 2008 https://doi.org/10.1109/icnc.2008.734

MOSTAFA, Kareem y HEGAZY, Tarek. Potential of Bayesian Networks for Forecasting The Ripple Effect Of Progress Events. En: Growing with youth – Croître avec les jeunes (12, junio, 2015: Montreal, Canada). https://www.csce.ca/elf/apps/CONFERENCEVIEWER/conferences/2019/pdfs/PaperPDFversion_74_0604104637.pdf.

NAMAZIAN, Ali; YAKHCHALI, Siamak Haji; YOUSEFI, Vahidreza y Tamošaitiené, Jolanta. Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk. En: International Journal of Environmental Research and Public Health. 10, diciembre, 2019. vol. 16, no. 24, p. 5024. https://doi.org/10.3390/ijerph16245024

NASIR, Daud; MCCABE, Brenda y HARTONO, Loesie. Evaluating Risk in Construction–Schedule Model (ERIC–S): Construction Schedule Risk Model. En: Journal of Construction Engineering and Management. Octubre, 2003. vol. 129, no. 5, p. 518-527. https://doi.org/10.1061/(asce)0733-9364(2003)129:5(518)

OURDEV, Ivan; SIMAAN ABOURIZK y MOHAMMED AL-BATAINEH. Simulation and uncertainty modeling of project schedules estimates. En: 2007 Winter Simulation Conference (9-12, diciembre, 2007: Washington, DC, USA). IEEE, 2007 https://doi.org/10.1109/wsc.2007.4419846

PIŞIRIR, Erhan; SÜ, Yasemin y YET, Barbaros. Integrating Risk into Project Control Using Bayesian Networks. En: International Journal of Information Technology & Decision Making. Agosto, 2020. vol. 19, no. 05, p. 1327-1352. https://doi.org/10.1142/s0219622020500315

QAZI, Abroon; QUIGLEY, John; DICKSON, Alex y KIRYTOPOULOS, Konstantinos. Project Complexity and Risk Management (ProCRiM): Towards modelling project complexity driven risk paths in construction projects. En: International Journal of Project Management. Octubre, 2016. vol. 34, no. 7 , p. 1183-1198. https://doi.org/10.1016/j.ijproman.2016.05.008

REZAKHANI, Pejman. Hybrid fuzzy-Bayesian decision support tool for dynamic project scheduling and control under uncertainty. En: International Journal of Construction Management. 9, octubre, 2020. p. 1-13. https://doi.org/10.1080/15623599.2020.1828539

RIVERA, Miller. El Papel De Las Redes Bayesianas En La Toma De Decisiones. En: Simulación al servicio de la academia. Febrero, 2011. https://www.urosario.edu.co/Administracion/documentos/investigacion/laboratorio/miller_2_3.pdf

SABILLON, Chris; RASHIDI, Abbas; SAMANTA, Biswanath; DAVENPORT, Mark y ANDERSON, David. Audio-Based Bayesian Model for Productivity Estimation of Cyclic Construction Activities. En: Journal of Computing in Civil Engineering. Enero, 2020. vol. 34, no. 1, p. 04019048. https://doi.org/10.1061/(asce)cp.1943-5487.0000863

SALVATIER, John; WIECKI, Thomas V. y FONNESBECK, Christopher. Probabilistic programming in Python using PyMC3. En: PeerJ Computer Science . 6, abril, 2016. vol. 2, p. e55. Disponible en Internet: https://doi.org/10.7717/peerj-cs.55

SANTOSO, Djoen San y SOENG, Sothy. Analyzing Delays of Road Construction Projects in Cambodia: Causes and Effects. En: Journal of Management in Engineering. Noviembre, 2016. vol. 32, no. 6 , p. 05016020. https://doi.org/10.1061/(asce)me.1943-5479.0000467

THE JOANNA BRIGGS INSTITUTE. The Joanna Briggs Institute Reviewers’ Manual 2015 Methodology for JBI Scoping Reviews., 2015.

VALLEJO, José; GUTIÉRREZ, Laura; PELLICER, Eugenio y PONZ, José. BEHAVIOR IN TERMS OF DELAYS AND COST OVERRUN OF THE CONSTRUCTION OF PUBLIC INFRASTRUCTURE IN COLOMBIA. En: SIBRAGEC - ELAGEC 2015 (7, octubre, 2015: San Carlos, Brasil). DOI:10.13140/RG.2.1.2496.5849

WU, J.; ZHANG, W. Y.; ZHANG, S; LIU, Y y MENG, X. A matrix-based Bayesian approach for manufacturing resource allocation planning in supply chain management. En: International Journal of Production Research. Marzo, 2013. vol. 51, no. 5, p. 1451-1463.https://doi.org/10.1080/00207543.2012.693966.ZHANG,

ZHANG, Sherong; DU, Chengbo; SA,Wenqi;WANG, Chao;WANG, Gaohui. Bayesian-Based Hybrid Simulation Approach to Project Completion Fo- recasting for Underground Construction. In: Journal of Construction Engineering and Management. January, 2014. vol. 140, no. 1 , p. 04013031. https:// doi.org/10.1061/(asce)co.1943-7862.0000764

Published

2022-06-10

Issue

Section

Articles

Similar Articles

1-10 of 618

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)