Mus musculus: biomodelo de expresión de Desyodinasa (DIO3) y Transtiretina (TTR) en el desarrollo placentario
DOI:
https://doi.org/10.18041/1900-3803/entramado.1.6538Palabras clave:
Antitiroideos, Embarazo Abdominal, Hormonas Tiroideas, Modelos Animales, Prealbumina, PlacentaResumen
Introducción: El correcto funcionamiento del eje hipotálamo-hipófisis-tiroides es indispensable para el crecimiento y desarrollo embrionario-fetal, al intervenir en la diferenciación de los tejidos, el desarrollo cerebral y somático, la maduración ósea y la regulación del metabolismo. El paso de las hormonas tiroideas maternas al feto a través de la placenta depende de transportadores transmembrana, enzimas desyodinasas (DIO2 y DIO3) y proteínas transportadoras (TTR). Objetivo: Identificar las zonas de expresión de DIO3 y TTR en la placenta de ratón Mus musculus E10.5, E12.5, E14.5. Métodos: La estructura placentaria y expresión de DIO3 y TTR fueron evaluadas con técnicas histoquímicas e inmunofluorescencia. Resultados: Desde E10.5 se encontraron las tres zonas placentarias, laberinto, zona de unión y decidua. En E12.5 se observó la conformación placentaria definitiva. DIO3 y TTR fueron detectadas en los tres estadios, con predominio en la zona del laberinto. Conclusión: DIO3 y TTR se expresan a lo largo del establecimiento y maduración de la placenta de ratón. El biomodelo murino es una herramienta útil para el estudio del transporte placentario de hormonas tiroideas desde la circulación materna a la fetal.
Descargas
Referencias
BARBER, Katharine J; FRANKLYN, Jayne A.; MCCABE, Christopher J.; KHANIM, FL.; BULMER, J.N.; WHITLEY, G.S.J.; KILBY, M.D. The in vitro effects of triiodothyronine on epidermal growth factor-induced trophoblast function. In: Journal of Clinical Endocrinology and Metabolism. March 2005. vol. 90, no. 3, p.1655–1661. https://doi.org/10.1210/jc.2004-0785
BERNASCONI, Sergio; SARTORI, C.; MERLI, S.; LAZZERONI, P.; CESARI, S.; STREET, M. E. Thyroid hormones in Fetal Development. In: Thyroid Diseases in Childhood: Recent Advances from Basic Science to Clinical Practice. January 2015. In Thyroid Diseases in Childhood: Recent Advances from Basic Science to Clinical Practice (pp. 15–26). Springer International Publishing. https://doi.org/10.1007/978-3-319-19213-0_2
BIANCO, Antonio C.; DUMITRESCU, Alexandra; GEREBEN, Balázs; RIBEIRO, Miriam O.; FONSECA, Tatiana L.; FERNANDES, Gustavo W.; BOCCO, Barbara M. L. C. Paradigms of Dynamic Control of Thyroid Hormone Signaling. In: Endocrine Reviews. 2019. vol. 40, no. 4, p.1000–1047. https://doi.org/10.1210/er.2018-00275
BOLON, Brad. Protocols for placental histology. In: Croy A, Yamada AT, Lee Adamson S (eds) The guide to investigation of mouse pregnancy. Elsevier, London. p. 537–544. ISBN: 978-0-12-394445-0 https://doi.org/10.1016/B978-0-12-394445-0.00045-X
BURNUM, Kristin E.; TRANGUCH, Susanne; MI, Deming; DAIKOKU, Takiko; DEY, S. K.; CAPRIOLI, Richard M. Imaging mass spectrometry reveals unique protein profiles during embryo implantation. In: Endocrinology. 2008. vol. 149, no. 7, p.3274 –3278. https://doi.org/10.1210/en.2008-0309
CHAN, Shiao; KACHILELE, Stivelia; HOBBS, Emilie; BULMER, Judith N.; BOELAERT, Kristien; MCCABE, Christopher J.; DRIVER, Patricia M.; BRADWELL, Arthur R.; KESTER, Monica; VISSER, Theo J.; FRANKLYN, Jayne A; KILBY, Mark D. Placental Iodothyronine Deiodinase Expression in Normal and Growth-Restricted Human Pregnancies. In: The Journal of Clinical Endocrinology & Metabolism. 1 September 2003. Vol. 88, no. 9. p. 4488–4495. https://doi.org/10.1210/jc.2003-030228
CARTER, Anthony Michael. Animal models of human placentation--a review. In: Placenta. Apr , 2007. vol. 28 Suppl A:S41-7. Epub 2006 Dec 27. PMID: 17196252. https://doi.org/10.1016/j.placenta.2006.11.002
CORNETT, Bridget; SNOWBALL, John; VARISCO, Brian M.; LANG, Richard; WHITSETT Jeffrey; SINNER, Debora. Wntless is required for peripheral lung differentiation and pulmonary vascular development. In: Developmental Biology. Jul, 2013. vol. 1 no. 379(1). p. 38-52. PMID: 23523683; PMCID: PMC3699333. https://doi.org/10.1016/j.ydbio.2013.03.010
CHOURPILIADI, Charikleia; PAPARODIS, Rodis. Physiology, Pituitary Issues During Pregnancy. In: StatPearls. 2020. In T. Island (Ed.), StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/pubmed/31869188
DARRAS, Veerle M.; HUME, Robert; VISSER, Theo J. Regulation of thyroid hormone metabolism during fetal development. In: Molecular and Cellular Endocrinology. 1999. vol. 151, p.37–47.
DENTICE, Monica; SALVATORE, Domenico. Local impact of thyroid hormone inactivation. In: Journal of Endocrinology. June 2011. vol. 209, no. 3, p.273–282. https://doi.org/10.1530/JOE-11-0002
DIAO, Honglu; XIAO, Shuo; CUI, Juan; CHUN, Jerold; XU, Ying; YE, Xiaoqin. Progesterone receptor-mediated up-regulation of transthyretin in preimplantation mouse uterus. In: Fertility and Sterility. May 2010. vol. 93, no. 8, p.2750–2753. https://doi.org/10.1016/j.fertnstert.2010.01.009
EERDEKENS, An; VERHAEGHE, Johan; DARRAS, Veerle; NAULAERS, Gunnar; DEN BERGHE, Greet; LANGOUCHE, Lies; VANHOLE, Christine. The placenta in fetal thyroid hormone delivery: from normal physiology to adaptive mechanisms in complicated pregnancies. In: The Journal of Maternal-Fetal & Neonatal Medicine. March 2019. vol. 14, p.1–10. https://doi.org/10.1080/14767058.2019.1586875
FELDING, Peter; FEX, Goran. Cellular Origin of Prealbumin in the Rat. In: Biochimica et Biophysica A Cta. 1982. vol. 716, no. 3, p.446–449. https://doi.org/10.1016/0304-4165(82)90040-X
FELDT-RASMUSSEN, Ulla; MATHIESEN, Elisabeth R. Endocrine disorders in pregnancy: Physiological and hormonal aspects of pregnancy. In: Best Practice and Research: Clinical Endocrinology and Metabolism. 2011. vol. 25, no. 6, p.875–884. https://doi.org/10.1016/j.beem.2011.07.004
FORHEAD, AJ.; FOWDEN, AL. Thyroid hormones in fetal growth and prepartum maturation. In: Journal of Endocrinology. 2014. vol. 221, no. 3, p.R87- 103. https://doi.org/10.1530/joe-14-0025
GALTON, Valerie A.; MARTÍNEZ, Elena; HERNÁNDEZ, Arturo; GERMAIN, Emily AS.; BATES, Joanne M.; GERMAIN, Donald L. S. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. In: Journal of Clinical Investigation. 1999. vol. 103, no. 7, p.979–987. https://doi.org/10.1172/JCI6073
GERHARDT Bradley; LEESMAN Lauren; BURRA Kaulini; John SNOWBALL; ROSENZWEIG Rachel; GUZMAN Natalie; AMBALAVANAN Manoj; SINNER Debora. Notum attenuates Wnt/β–catenin signaling to promote tracheal cartilagepatterning. In: Developmental Biology. Febrero 2018. no. 436 p. 14-27 https://doi.org/10.1016/j.ydbio.2018.02.002
GEORGIADES, P.; FERGYSON-SMITH, AC.; BURTON, GJ. Comparative developmental anatomy of the murine and human definitive placentae. In: Placenta. 2002. vol. 23, no. 1, p.3–19. https://doi.org/10.1053/plac.2001.0738
HEMBERGER, Myriam; HANNA, Courtney W.; DEAN, Wendy. Mechanisms of early placental development in mouse and humans. In: Nature Reviews Genetics. 2020. vol. 21, no. 1, p.27–43. https://doi.org/10.1038/s41576-019-0169-4
HERNÁNDEZ, Arturo; MARTINEZ, M. Elena; FIERING, Steven; GALTON, Valerie A.; ST. GERMAIN, Donald. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. In: Journal of Clinical Investigation. February 2006. vol. 116, no. 2, p.476–484. https://doi.org/10.1172/JCI26240
HADDOW, James E.; KNIGHT, George J.; PALOMAKI, Glenn E.; MCCLAIN, Monica R.; PULKKINEN, Andrea J. The reference range and within-person variability of thyroid stimulating hormone during the first and second trimesters of pregnancy. In: J Med Screen. 2004. vol. 11, no. 4. p. 170-174. https://doi.org/10.1258/0969141042467340
HUANG, Stephen A.; DORFMAN, David M.; GENEST, David R.; SALVATORE, Domenico; LARSEN, P. Reed. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. In: Journal of Clinical Endocrinology and Metabolism. March 2003. vol. 88, no. 3, p.1384–1388. https://doi.org/10.1210/jc.2002-021291
HUANG, Tien-Shang; CHOPRA, Inder J.; BOADO, Ruben; SOLOMON, David H.; TECO, Guadalupe NC. Thyroxine Inner Ring Monodeiodinating Activity in Fetal Tissues of the Rat. In: Pediatric Research. 1988. vol. 23, no. 2, p.196–199. https://www.nature.com/articles/pr1988240
HUANG, Tien Shang; BEREDO, Angelita; SOLOMON, David H.; CHOPRA, Inder J. The inner ring (5-) monodeiodination of thyroxine (T4) in cerebral cortex during fetal, neonatal, and adult life. In: Metabolism. 1986. vol. 35, no. 3, p.272–277. https://doi.org/10.1016/0026-0495(86)90213-1
HUANG, Tien S.; CHOPRA, Inder J.; BEREDO, Angelita; SOLOMON, David H.; CHUA TECO, Chua N. Skin is an active site for the inner ring monodeiodination of thyroxine to 3, 3′, 5′-triiodothyronine. In: Endocrinology. 1985. vol. 117, no. 5, p.2106–2113. https://doi.org/10.1210/endo-117-5-2106
KALKUNTE, Satyan S.; NEUBECK, Stefan; NORRIS, Wendy E.; CHENG, Shi B; KOSTADINOV, Stefan; VU HOANG, Dang; AHMED, Aftab; VON EGGELING, Ferdinand; SHAIKH, Zahir; PADBURY, James; BERG, Gogran; OLOFSSON, Anders; MARKERT, Udo R.; SHARMA, Surendra. Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. In: American Journal of Pathology. November 2013. vol. 183, no. 5, p.1425–1436. https://doi.org/10.1016/j.ajpath.2013.07.022
KNÖFLER, Martin; HAIDER, Sandra; SALEH, Leila; POLLHEIMER, Jurgen; GAMAGE, Teena K. J. B.; JAMES, Joanna. Human placenta and trophoblast development: key molecular mechanisms and model systems. In: Cellular and Molecular Life Sciences. September 2019. vol. 76, no. 18, p.3479–3496. https://doi.org/10.1007/s00018-019-03104-6
KOOPDONK-KOOL, Jolanda M.; DE VIJLDER, Jan JM.; VEENBOER, Geertruda JM.; RIS-STALPERS, Carrie; KOK, Joke H.; WLSMA, Thomas; BOER, Kees; VISSER, Theo J.; VULSMA, Thomas. Type II and Type III Deiodinase Activity in Human Placenta as a Function of Gestational Age. In: The Journal of Clinical Endocrinology and Metabolism. 1996. vol. 81, no. 6, p.2154–2158.
LANDERS, KA.; MORTIMER, RH.; RICHARD, K. Transthyretin and the human placenta. In: Placenta. July 2013. vol. 34, no. 7, p.513–517. https://doi.org/10.1016/j.placenta.2013.04.013
LANDERS, Kelly A.; LI, Huika; MORTIMER, Robin H.; MCLEOD, Donald S. A.; D’EMDEN, Michael C.; RICHARD, Kerry. Transthyretin uptake in placental cells is regulated by the high-density lipoprotein receptor, scavenger receptor class B member 1. In: Molecular and Cellular Endocrinology. 2018. vol. 474, p.89–96. https://doi.org/10.1016/j.mce.2018.02.014
LIU, Ai-Xia; JIN, Fan; ZHANG, Wu-Wen; ZHOU, Tian-Hua; ZHOU, Cai-Yun; YAO, Wei-Miao; QIAN, Yu-Li; HUANG, He-Feng. Proteomic Analysis on the Alteration of Protein Expression in the Placental Villous Tissue of Early Pregnancy Loss. In: Biology of Reproduction. September 2006. vol. 75, no. 3, p.414–420. https://doi.org/10.1095/biolreprod.105.049379
LIU, Yan Y.; BRENT, Gregory A. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. In: Pharmacology and Therapeutics. June 2018. vol. 186, p.176–185. https://doi.org/10.1016/j.pharmthera.2018.01.007
LOUBIÈRE, Laurence S.; VASILOPOULOU, Elisavet; GLAZIER, Jocelyn D.; TAYLOR, Prter M.; FRANKLYN, Jayne A.; KILBY, Mark D.; CHAN, Shiao Y. Expression and Function of Thyroid Hormone Transporters in the Microvillous Plasma Membrane of Human Term Placental Syncytiotrophoblast. In: Endocrinology. December 2012. vol. 153, no. 12, 1. p. 6126-6135 https://doi.org/10.1210/en.2012-1753
MA, Xiao-Peng; LIU, Chong-Dong; CAO, Guang-Ming; ZHANG, Zhen-Yu. Transthyretin increases migration and invasion of ratplacental trophoblast cells. In: FEBS Open Bio. June, 2020. vol. 10, no. 8. p. 1568–1576 https://doi.org/10.1002/2211-5463.12911
MALTEPE, Emin; BAKARDJIEV, Anna I.; FISHER, Susan J. The placenta: transcriptional, epigenetic, and physiological integration during development. In: The Journal of Clinical Investigation. April, 2010.vol. 120, no.4. p. 1016-1025. https://doi.org/10.1172/JCI41211
MALASSINÉ, André; FRENDO, Jean Louis; EVAIN-BRION, Danièle. A comparison of placental development and endocrine functions between the human and mouse model. In: Human Reproduction Update. November 2003. vol. 9, no 6. p. 531 539. https://doi.org/10.1093/humupd/dmg043
MARUO, Takeshi. Progesterone, thyroid hormone and relaxin in the regulation of the invasive potential of extravillous trophoblasts in early placental development. In: Gynecological Endocrinology. September 2010. vol. 26, no. 9, p.629–630. https://doi.org/10.3109/09513590.2010.492966
MCKINNON, Brett; LI, Huika; RICHARD, Kerry; MORTIMER, Robin. Synthesis of thyroid hormone binding proteins transthyretin and albumin by human trophoblast. In: Journal of Clinical Endocrinology and Metabolism. 2005. vol. 90, no. 12, p.6714–6720. https://doi.org/10.1210/jc.2005-0696
MIRANDA, Alexandra; SOUSA, Nuno. Maternal hormonal milieu influence on fetal brain development. In: Brain and Behavior. February 2018. vol. 8, no. 2, p.1–23. https://doi.org/10.1002/brb3.920
MOLETI, Mariacarla; DI MAURO, Maria; STURNIOLO, Giacomo; RUSSO, Marco; VERMIGLIO, Francesco. Hyperthyroidism in the pregnant woman: Maternal and fetal aspects. In: Journal of Clinical and Translational Endocrinology. June 2019. vol. 16, p.2–7. https://doi.org/10.1016/j.jcte.2019.100190
MOOG, Nora K.; ENTRINGER, Sonja; HEIM, Christine; WADHWA, Pathik D.; KATHMANN, Norbert; BUSS, Claudia. Influence of maternal thyroid hormones during gestation on fetal brain development. In: Neuroscience. February 2017. vol. 342, p.68–100. https://doi.org/10.1016/j.neuroscience.2015.09.070
PATEL, Jatin; LANDERS, Kelly A.; LI, Huika; MORTIMER, Robin H.; RICHARD, Kerry. Ontogenic changes in placental transthyretin. In: Placenta. November 2011a. vol. 32, no. 11, p.817–822. https://doi.org/10.1016/j.placenta.2011.09.007
PATEL, Jatin; LANDERS, Kelly; LI, Huika; MORTIMER, Robin H.; RICHARD, Kerry. Delivery of maternal thyroid hormones to the fetus. In: Trends in Endocrinology and Metabolism. May 2011b. In Trends in Endocrinology and Metabolism vol. 22, no. 5, p. 164–170. https://doi.org/10.1016/j.tem.2011.02.002
PENG, Shiqiao; LI, Chenyan; XIE, Xiaochen; ZHANG, Xiaomei; WANG, Danyang; LU, Xixuan; SUN, Manni; MENG, Tao; WANG, Shiwei; JIANG Yaqiu; SHAN, Zhongyan; TENG, Weiping. Divergence of Iodine and Thyroid Hormones in the Fetal and Maternal Parts of Human-Term Placenta. In: Biol Trace Elem Res. May, 2020 vol. 195. p. 27-38. https://doi.org/10.1007/s12011-019-01834-z
SONCIN, Francesa; KHATER, Marwa; TO, Cuong; PIZZO, Donald; FARAH, Omar; WAKELAND, Anna; RAJAN, Kanaga AN.; NELSON, Katharine K. ; CHANG, Ching W. ; MORETTO-ZITA, Matteo; NATALE, David R.; LAURENT, Louise C.; PARAST, Mana M. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. In: Development. 2018. vol. 145, no. 2, p.1–13. https://doi.org/10.1242/dev.156273
TONG, Mancy; CHENG, Shi B.; CHEN, Qi; DESOUSA, Joana; STONE, Peter R.; JAMES, Joanna L.; CHAMLEY, Lawrence W.; SHARMA, Surendra. Aggregated transthyretin is specifically packaged into placental nano-vesicles in preeclampsia. In: Scientific Reports. 2017. vol. 7, no. 1, p.1–9. https://doi.org/10.1038/s41598-017-07017-x
WATSON, Erica D.; CROSS, James C. Development of structures and transport functions in the mouse placenta. In: Physiology. June 2005. vol. 20, no. 3, p.180–193. https://doi.org/10.1152/physiol.00001.2005
ZIEGELMÜLLER, Brigitte; VATTAI, Aurelia; KOST, Bernd; KUHN, Christina; HOFMANN, Simone; BAYER, Birgit; TOTH, Bettina; JESCHKE, Udo; DITSCH, Nina. Expression of Thyroid Hormone Receptors in Villous Trophoblasts and Decidual Tissue at Protein and mRNA Levels Is Downregulated in Spontaneous and Recurrent Miscarriages. March, 2015. vol. 63, no.7. p. 511-523 https://doi.org/10.1369/0022155415582052
Publicado
Número
Sección
Licencia
Derechos de autor 2020 Entramado

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.