Ordinal Logistic Regression Applied to the Identification of Risk Factors for Cervical Cancer
DOI:
https://doi.org/10.18041/1909-2458/ingeniare.17.582Keywords:
cancer, cervix, risk, logistic regression, random variables, sample, parametersAbstract
Identifying risk factors for cervical cancer is crucial to effectively conduct diagnostics which, in a given time, can be a key issue to save lives. From this perspective, this study was performed on a sample of 105 patients, which circumscribed to all women who went to the gynecologist in a campaign developed by the Health Secretary of the department of Atlántico, Colombia. Two instruments were used for data collection: The data linked to cervical cancer were recorded on a form developed for this purpose. In this study, the Cancer of the cervix (CCU) was considered as the dependent variable and factors related to birth [(Age (ed), number of live born children (OVC), Number of Children Born Dead (NHM), birth rate (tp) and type of pregnancy (I))] were regarded as independent variables. Finally, the characteristics of sexual behavior (venereal disease (VD): syphilis, herpes, gonorrhea or other) were also treated. In a general way, it is observed that the risk of cervical cancer is greater when the number of children increases in cesarean deliveries and there exist the loss of a child.
Downloads
References
J. Truett, J. Cornfield y W. Kannel, “A multivariate analysis of the risk of coronary heart disease in Framingham”, J Chronic Dis; vol. 20, n. 7, pp. 511-524., 1967.
Breslow y Day, Statistical Methods in Cancer Research, Volume I - The analysis of case-control studies, 1980.
D. R. Cox, The Analysis of Binary Data, 1970.
D. G. Kleinbaum, L. L. Kupper and H. Morgenstern, “Epidemiologic Research”. Belmont, Calif: Lifetime Learning Publications, 1982.
J. J. Schlesslman, “Case control studies”. Desig, Conduct, Análisis. Nueva York: Oxford University Press, 1982.
L. Flores, Análisis Estadístico de Factores de riesgo que influyen en la enfermedad Angina de Pecho, Oficina General del Sistema de Bibliotecas y Biblioteca Central UNMSM., 2002.
M. Ato García, y J. J. López García, Análisis estadístico para datos categóricos. Madrid: Editorial Síntesis, 1996.
A. Alderet. “Fundamentos del Análisis de Regresión Logística en la Investigación Psicológica”, Revista Evaluar, vol. 6, pp. 52-67., 2006.
J. F. Hair, R.E. Anderson, R. L. Tatham y W.C. Black, Análisis Multivariante. 5° Edición. Madrid: Prentice Hall, 1999.
M. V. García Jiménez, J. M. Alvarado Izquierdo, y J. Jiménez Blanco, “La predicción del rendimiento académico: regresión lineal versus regresión logística”, en: Psicothema, vol. 12, n°. 2, pp. 248-252., 2000.
N. Cortada de Cohan, “Teoría de Respuesta al Ítem”, Evaluar, n°. 4,pp. 95-110, 2004.
D. Ferreres Traver, A. M. Hidalgo Aliste y J. Muñiz, “Detección del Funcionamiento Diferencial de los ítems no uniforme: comparación de los métodos Mantel-Haenszel y regresión logística”, Psicothema, vol. 12, n°. 2, pp. 220-225., 2000.
M. Hidalgo Montesinos y J. A. López Pina, “Comparación entre las medias de área, el estadístico de Lord y el análisis de regresión logística en la evaluación del funcionamiento diferencial de los ítems”, Psicothema, vol. 9, n°. 2, pp. 417-431., 1997.
L. Flores Manrique, Análisis Estadístico de los Factores de Riesgo que Influyen en la Enfermedad Angina de pecho., 2002.
V. Pando Fernández y R. San Martín Fernández, Regresión Logística Multinomial. Madrid: Universidad de Valladolid, 2004.
R. Ortiz serrano, C. Uribe Pérez, “Factores de Riesgo para cáncer de Cuello Uterino”, Colombiana de Obstetricia y Ginecología, vol. 55, n°. 2, pp. 146-160, 2004.