Ordinal Logistic Regression Applied to the Identification of Risk Factors for Cervical Cancer

Authors

  • Evaristo Navarro Manotas
  • Aníbal Verbel Castellar
  • Delia Robles García
  • Kennedy Hurtado Ibarra

DOI:

https://doi.org/10.18041/1909-2458/ingeniare.17.582

Keywords:

cancer, cervix, risk, logistic regression, random variables, sample, parameters

Abstract

Identifying risk factors for cervical cancer is crucial to effectively conduct diagnostics which, in a given time, can be a key issue to save lives. From this perspective, this study was performed on a sample of 105 patients, which circumscribed to all women who went to the gynecologist in a campaign developed by the Health Secretary of the department of Atlántico, Colombia. Two instruments were used for data collection: The data linked to cervical cancer were recorded on a form developed for this purpose. In this study, the Cancer of the cervix (CCU) was considered as the dependent variable and factors related to birth [(Age (ed), number of live born children (OVC), Number of Children Born Dead (NHM), birth rate (tp) and type of pregnancy (I))] were regarded as independent variables. Finally, the characteristics of sexual behavior (venereal disease (VD): syphilis, herpes, gonorrhea or other) were also treated. In a general way, it is observed that the risk of cervical cancer is greater when the number of children increases in cesarean deliveries and there exist the loss of a child.

Downloads

References

E. García Ayala, J. Díaz Pérez, M. Melo, F. Parra Fuentes, L.Vera y J.Latorre, “Factores asociados a la identificación del cáncer de cuello uterino en la citología, colposcopia y biopsia en la liga santandereana de lucha contra el cáncer de 2002 a 2003”, Revista española de patología, vol. 40, No. 1., 2007.

J. Truett, J. Cornfield y W. Kannel, “A multivariate analysis of the risk of coronary heart disease in Framingham”, J Chronic Dis; vol. 20, n. 7, pp. 511-524., 1967.

Breslow y Day, Statistical Methods in Cancer Research, Volume I - The analysis of case-control studies, 1980.

D. R. Cox, The Analysis of Binary Data, 1970.

D. G. Kleinbaum, L. L. Kupper and H. Morgenstern, “Epidemiologic Research”. Belmont, Calif: Lifetime Learning Publications, 1982.

J. J. Schlesslman, “Case control studies”. Desig, Conduct, Análisis. Nueva York: Oxford University Press, 1982.

L. Flores, Análisis Estadístico de Factores de riesgo que influyen en la enfermedad Angina de Pecho, Oficina General del Sistema de Bibliotecas y Biblioteca Central UNMSM., 2002.

M. Ato García, y J. J. López García, Análisis estadístico para datos categóricos. Madrid: Editorial Síntesis, 1996.

A. Alderet. “Fundamentos del Análisis de Regresión Logística en la Investigación Psicológica”, Revista Evaluar, vol. 6, pp. 52-67., 2006.

J. F. Hair, R.E. Anderson, R. L. Tatham y W.C. Black, Análisis Multivariante. 5° Edición. Madrid: Prentice Hall, 1999.

M. V. García Jiménez, J. M. Alvarado Izquierdo, y J. Jiménez Blanco, “La predicción del rendimiento académico: regresión lineal versus regresión logística”, en: Psicothema, vol. 12, n°. 2, pp. 248-252., 2000.

N. Cortada de Cohan, “Teoría de Respuesta al Ítem”, Evaluar, n°. 4,pp. 95-110, 2004.

D. Ferreres Traver, A. M. Hidalgo Aliste y J. Muñiz, “Detección del Funcionamiento Diferencial de los ítems no uniforme: comparación de los métodos Mantel-Haenszel y regresión logística”, Psicothema, vol. 12, n°. 2, pp. 220-225., 2000.

M. Hidalgo Montesinos y J. A. López Pina, “Comparación entre las medias de área, el estadístico de Lord y el análisis de regresión logística en la evaluación del funcionamiento diferencial de los ítems”, Psicothema, vol. 9, n°. 2, pp. 417-431., 1997.

L. Flores Manrique, Análisis Estadístico de los Factores de Riesgo que Influyen en la Enfermedad Angina de pecho., 2002.

V. Pando Fernández y R. San Martín Fernández, Regresión Logística Multinomial. Madrid: Universidad de Valladolid, 2004.

R. Ortiz serrano, C. Uribe Pérez, “Factores de Riesgo para cáncer de Cuello Uterino”, Colombiana de Obstetricia y Ginecología, vol. 55, n°. 2, pp. 146-160, 2004.

Downloads

Published

2014-07-01

Issue

Section

Artículos

How to Cite

1.
Navarro Manotas E, Verbel Castellar A, Robles García D, Hurtado Ibarra K. Ordinal Logistic Regression Applied to the Identification of Risk Factors for Cervical Cancer. ingeniare [Internet]. 2014 Jul. 1 [cited 2025 Apr. 7];(17):87-105. Available from: https://revistas.unilibre.edu.co/index.php/ingeniare/article/view/582

Similar Articles

You may also start an advanced similarity search for this article.