Classical determination of the zero-point energy for different radiating systems
DOI:
https://doi.org/10.18041/1909-2458/ingeniare.34.10984Keywords:
Planck constant, Maxwell theory, Helmholtz equationAbstract
This article evaluates the electromagnetic zero-point energy, without using the usual blackbody conceptualization and adopting the perspective of associating a characteristic length or linear length to the oscillator of a cavity (without employing quantization arguments); the zero-point energy is determined for different real radiating systems, finding that it depends on a parameter β which is of the order of the reduced Planck constant ℏ.
Downloads
References
De la Peña, L. Cetto, A.M. Hernández, A. The Emerging Quantum: The Physis Behind Quantum Mechanics; Springer: New York, NY, USA, 2015.
Townsend, A.J. Quantum Physics: A Fundamental approach to Modern Physics, University Science books, Mili Valley, California, 2010.
Weinberg, S. The Quantum Theory of Fields, Volume I, Foundations, Cambridge University Press, 1995, New York. [4] T. W. Marshall, Stochastic electrodynamics, Proc. Camb. Philos. Soc. 61, 537-546 (1965).
Boyer, T.H. The blackbody radiation spectrum follows from zero-point radiation and the structure of relativistic spacetime in classical physics, Found. Phys. 42, 595-614 (2012).
Ling, S.J., Sanny, J. and Moebs, W. University Physics Volume 3, OpenStax, Houston, Texas, 2018.
Planck, M. Verhandlungen der Deutschen Physikalischen Gesellschaft 13 (1911), p.138.
Einstein, A.,Stern, O. Ann. Physik 40 (1913), p.551. [9] T H Boyer, Phys. Rev. D 29 (1984), p. 1096.
California Institute for Physics and Astrophysics, Questions and Answers about the Origin of Inertia and the Zero-Point Field, p.l. Available at http://www.calphysics.org/questions.html.
Boyer, T.H. The Contrasting Roles of Planck’s Constant in Classical and Quantum Theories, 2017, American Journal of Physics 86(4), DOI: 10.1119/1.5021355
Haisch, B., Rueda, A. Phys. Lett. A, 268 (2000), p. 224.
,Casimir, H. B. G. “On the attraction between two perfectly conducting plates”, Proc. Ned. Akad. Wetenschap. 51, 793-795 (1948).
Milonni, P.W., Cook, R.J. and Goggin, M.E. Radiation pressure from the vacuum: Physical interpretation of the Casimir forcé, Phys Rev A, 38, 3 (1988).
Lamoreaux, S. Phys. Rev. Lett. 78 (1997), p.5; U Mohideen, A Roy, Phys. Rev. Lett. 81 (1998), p. 4549.
Mohideen, U. Precision measurement of the Casimir forcé from 0.1 to 0.9 /im, ibíd. 81, 4549-4552 (1998).
Griffiths, D.J. Introduction to Electrodynamics, Fourth Edition, Pearson Education, 2013.
Riley, K.F- Hobson, M.P. and Bence, S.J. Mathematical methods for physics and engineering, Second Edition, Cambridge University Press, Madrid, 2002.
Nikifo, A.F. and Uvarov, V.B. Special Functions of Mathematical Physics, Springer, Moscow, 1978.
Novak, K.L. and Fox, L.J. Special Functions of Mathematical Physics, Copyrighted Material, New York, 2018.
Hassani, S. Mathematical Physics, A Modern Introduction to Its Foundations, Second Edition, Springer International Publishing, New York, 1999.
Arfken, G.B., Weber, H.J. and Harris, F.E. Mathematical Methods for Physicists, Seventh Edition, Academic Press Publications, New York, 2012.
Boas, M.L. Mathematical Methods in the Physical Sciences, Third Edition, Wiley Student Edition, 2005.
Landau, L.D. et al. Electrodynamics of continuous media, Vol 8 (2nd ed.). Butherworth- Hainimann, 1984.
Razmi, H. and Shirazi, S.M. Is the Free Vacuum Energy Infinite?, Advances in High Energy Physics, vol. 2015, Article ID 278502, 3 pages, 2015. https://doi.org/10.1155/2015/278502.
Schiller, C. Motion Mountain: the adventure of physics, Twenty-fourth edition, vol 2., Munich: Creative Commons 2011 [27] T. W. Marshall, Random electrodynamics, Proc. R. Soc. A276, 475-491 (1963).
Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. D 11, 790-808 (1975).
Boyer, T.H. Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions, Physical Review, 1969, Vol 182, pgs. 1374-1383
Regge, T. Gravitational fields and quantum mechanics. Nuovo Cim 7, 215-221 (1958). https://doi.org/10.1007/BF02744199 [31] T. Padmanabhan, Planck length: Lost + found. Phys. Lett. B 809 (2020). https://doi.Org/10.1016/j.physletb.2020.135774.
Massie, U.W. Gravity and Zero Point Energy, Physics Procedia, Volume 38, 2012, pp. 290, 287.
Zurek, K.M. On vacuum fluctuations in quantum gravity and interferometer arm fluctuations, Physics Letter B, V 826, 2922.
Vasiliev, B.V. Superconductivity, Superfluidit, and Zero-Point oscillations, Journal of Modern Physics, V 9,3,2018.
Moddel, G. and Dmitreyeva, O. Extraction of Zero-Point Energy from the Vacuum: Assessment of Stochastic Electrodynamics-Based Approach as Compared to Other Methods. Atoms, 7 (2), 51,2019.
Nair, V.C.A. Zero Point Energy , E_0=1/2 hν , the Quantum Magician of Modern Physics, International Advanced Research Journal in Science, Engineering and Technology, 8.2,2021
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ingeniare

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.