DETERMINACIÓN DEL ORIGEN Y POTENCIAL GEOTÉRMICO DE LAS MANIFESTACIONES HIDROTERMALES UBICADAS EN LOS MUNICIPIOS DE BECERRIL (CESAR) Y CIÉNAGA (MAGDALENA)

Autores/as

  • Rafael Bernal Vergara Fundación Universitaria del Área Andina
  • Johander Méndez Montero Fundación Universitaria Del Área Andina
  • Luis Alberto Quintero López Fundación Universitaria Del Área Andina

DOI:

https://doi.org/10.18041/1909-2458/ingeniare.30.7923

Palabras clave:

Carbonatos, Entalpia, Geotermia, Hidrotermal, Zona de falla

Resumen

Se caracterizaron 2 sistemas hidrotermales, ubicados respectivamente en Ciénaga (Magdalena) y Becerril (Cesar), detallando componentes geológicos como fallas locales y zona de mezcla de fluido. Por medio de la proporción de carbonatos, sulfatos y cloruros, se establecieron dos condiciones distintas de aporte calórico, en Becerril a 3 metros de profundidad referente a la base de emanación, las temperaturas oscilan entre (30-34)°C, siendo enriquecidas por fases carbonatadas (CaCO3) condicionando la procedencia del fluido a un calentamiento por enterramiento, calificándolo como un Manantial Hidrotermal de Entalpia Baja (Potencial bajo), los datos en Ciénaga  a 4 metros de profundidad referente a la base de emanación, poseen temperaturas entre (41-45) °C, con predominancia de (SO4) en la solución, además de material triturado de formaciones circundantes, sugiere condiciones geológicas de zona de falla, calentadas por una fase de vapor en mescla con aguas superficiales, siendo establecida como una fisura de Entalpia Media (Potencial Medio-Bajo).

Descargas

Los datos de descarga aún no están disponibles.

Referencias

E. Mejía, L. Rayo, J. Méndez, y J. Echeverri, «GEOTHERMAL DEVELOPMENT IN COLOMBIA», p. 7.

J. W. Lund y D. H. Freeston, «World-wide direct uses of geothermal energy 2000», Geothermics, vol. 30, n.o 1, pp. 29-68, 2001.

A. Kagel, D. Bates, y K. Gawell, «A guide to geothermal energy and the environment», Geothermal Energy Association, Washington, DC (USA), US, None, abr. 2005. doi: 10.2172/897425.

F. D’Amore y A. H. Truesdell, «Calculation of geothermal reservoir temperatures and steam fractions from gas compositions», Geological Survey, Menlo Park, CA (USA); Istituto Internazionale per le Ricerche Geotermiche, Pisa (Italy), DOE/RA/50294-T2, ene. 1985. doi: 10.2172/6060131.

E. Akrami, A. Chitsaz, H. Nami, y S. M. S. Mahmoudi, «Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy», Energy, vol. 124, pp. 625-639, abr. 2017, doi: 10.1016/j.energy.2017.02.006.

S. E. Grasby et al., «Geothermal energy resource potential of Canada», 6914, 2012. doi: 10.4095/291488.

«Geothermal Basics - Mythbusters». http://www.geo-energy.org/geo_basics_mythbusters.aspx (accedido sep. 12, 2019).

C. Alfaro, «Improvement of Perception of the Geothermal Energy as a Potential Source of Electrical Energy in Colombia, Country Update», 2015.

N. C. Marzolf, «EMPRENDIMIENTO DE LA ENERGÍA GEOTÉRMICA EN COLOMBIA», vol. 1, n.o 1, p. 86.

«Plan energetico nacional colombia: Ideario energético 2050», vol. 1, n.o 1, p. 184.

N. Kholod et al., «Global methane emissions from coal mining to continue growing even with declining coal production», J. Clean. Prod., vol. 256, p. 120489, 2020.

X. Tang, Y. Jin, B. C. McLellan, J. Wang, y S. Li, «China’s coal consumption declining—Impermanent or permanent?», Resour. Conserv. Recycl., vol. 129, pp. 307-313, 2018.

groups/337207473276, «La exportación de carbón es un ingreso económico importante para Colombia, pero tiene efectos climáticos y sociales dañinos. ¿Qué opciones tenemos?», Biogenic.Colombia, abr. 02, 2017. http://blogs.eltiempo.com/biogenic-colombia/2017/04/02/la-exportacion-de-carbon-es-un-ingreso-economico-importante-para-colombia-pero-tiene-efectos-climaticos-y-sociales-daninos-que-opciones-tenemos/ (accedido sep. 12, 2019).

C. Alfaro, L. A. Briceño, I. Alvarado, y W. Quintero, «Mapa Geotérmico de Colombia–2009 [PAPER IN SPANISH] Geothermal Map of Colombia-2009», 2009.

N. F. Bernal, G. Ramirez, y C. V. Alfaro, «Mapa geotérmico de Colombia. Versión 1.0. Escala 1: 1’500.000. Memoria explicativa. Exploración y Evaluación de Recursos Geotérmicos», 2000.

H. C. H. Armstead y H. C. H. Armstead, Geothermal energy: its past, present and future contributions to the energy needs of man. Spon London, 1978.

A. Paulillo, L. Cotton, R. Law, A. Striolo, y P. Lettieri, «Geothermal energy in the UK: The life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project», J. Clean. Prod., vol. 249, p. 119410, 2020.

M. A. Thayer, «Contingent valuation techniques for assessing environmental impacts: further evidence», J. Environ. Econ. Manag., vol. 8, n.o 1, pp. 27-44, 1981.

E. Gómez Díaz, «Low Enthalpy Geothermal System at Dabeiba, Colombia; an Assessment Through the Hydrogeochemistry of Thermal Waters», feb. 2019.

D. Bonté, «Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling», Neth. J. Geosci., p. 25, 2012.

R. M. Diaz, A. Costa, L. Duarte, y C. Rosa, «COMUNICACIÓN TEMA 2. PRINCIPALES CARACTERÍSTICAS Y LIMITACIONES DEL ACUÍFERO CRETÁCICO INFERIOR EN LA REGIÓN DE LISBOA PARA SU POTENCIAL USO COMO RECURSO GEOTÉRMICO DE BAJA ENTALPÍA», p. 7, 2013.

«INVTERMALES - Bienvenidos al Inventario Nacional de Manifestaciones Hidrotermales». http://hidrotermales.sgc.gov.co/ (accedido sep. 12, 2019).

ICONTEC, «NTC-ISO 5667-02-1995. Tecnicas generales de muestreo». ICONTEC, oct. 08, 2018, Accedido: sep. 12, 2019. [En línea]. Disponible en: http://files.control-ambiental5.webnode.com.co/200000144-4dfdd4f559/NTC-ISO%205667-02-1995.%20Tecnicas%20generales%20de%20muestreo.pdf.

G. Gloria, «MANUAL DE ANALISIS DE AGUA», Tesis Profesor Asistente, Universidad Nacional De Colombia (Sede Manizales), 1995.

«Sedimentologia Sedimentology - JULIO CESAR MENDIBERRI». https://www.aiu.edu/spanish/publications/student/spanish/180-207/sedimentologia-sedimentology.html (accedido sep. 12, 2019).

MINISTERIO DE INDUSTRIA Y ENERGIA y SECTRETARIA DE LA ENERGIA Y RECURSOS MINERALES, «Analisis Metodologico de las tecnicas geoquimicas empleadas en prospeccion Geotermica». Instituto geologico minero de España, oct. 08, 1985, [En línea]. Disponible en: http://info.igme.es/SidPDF/035000/001/Analisis%20metodologico%20de%20las%20tecnicas%20geoquimicas%20empleadas%20en%20prospeccion%20geotermica/35001_0001.pdf.

Servicio geologico colombiano, «PLANCHA BECERRIL». SGC, dic. 08, 2015, Accedido: mar. 11, 2019. [En línea].

SGC, «ELABORACIÓN DE LA CARTOGRAFÍA GEOLÓGICA DE UN CONJUNTO DE PLANCHAS A ESCALA 1:100.000 UBICADAS EN CUATRO BLOQUES DEL TERRITORIO NACIONAL, IDENTIFICADOS POR EL SERVICIO GEOLÓGICO COLOMBIANO», p. 160.

H. Marina, «Memoria explicativa Plancha 18 - Cienaga». SGC, abr. 13, 2013, [En línea]. Disponible en: http://recordcenter.sgc.gov.co/B4/13010010024387/documento/pdf/0101243871101000.pdf.

E. Rojas Martínez, M. Fortich Duarte, y H. Pavajeau Maestre, «Determinación del origen y la composición de las aguas termales ubicadas en los municipios de Becerril (Cesar) y Ciénaga (Magdalena), Colombia», Ingenium, vol. 8, n.o 21, p. 35, sep. 2014, doi: 10.21774/ing.v8i21.441.

D. Curewitz y J. A. Karson, «Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction», J. Volcanol. Geotherm. Res., vol. 79, n.o 3-4, pp. 149-168, dic. 1997, doi: 10.1016/S0377-0273(97)00027-9.

C. H. Scholz, N. H. Dawers, J.-Z. Yu, M. H. Anders, y P. A. Cowie, «Fault growth and fault scaling laws: Preliminary results», J. Geophys. Res. Solid Earth, vol. 98, n.o B12, pp. 21951-21961, dic. 1993, doi: 10.1029/93JB01008.

SGC, «Memoria explicativa plancha 41- 42». Servicio Geologico Colombiano, Accedido: feb. 10, 2018. [En línea].

C. E. Barker, «Geothermics of petroleum systems: Implications of the stabilization of kerogen thermal maturation after a geologically brief heating duration at peak temperature», en Petroleum Systems of the United States, vol. 1870, US Geological Survey Bulletin 1870, Washington, DC, 1988, pp. 26-29.

A. Minissale et al., «Geochemistry, geothermics and relationship to active tectonics of Gujarat and Rajasthan thermal discharges, India», J. Volcanol. Geotherm. Res., vol. 127, n.o 1-2, pp. 19-32, 2003.

G. G. E. Facts, «Geothermal education office», Calif. USA Httpgeothermal Mar. Orgpwrheat Html Q1, 2004.

«Geothermal Education Office». http://geothermaleducation.org/ (accedido sep. 27, 2017).

P. A. Bakane, «Overview Of Extraction Of Mineral/Metals With The Help Of Geothermal Fluid», en Proceedings of the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 2013, pp. 11-13.

J. Hecht-Méndez, N. Molina-Giraldo, P. Blum, y P. Bayer, «Evaluating MT3DMS for heat transport simulation of closed geothermal systems», Groundwater, vol. 48, n.o 5, pp. 741-756, 2010.

A. Gudmundsson, I. Fjeldskaar, y S. L. Brenner, «Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields», J. Volcanol. Geotherm. Res., vol. 116, n.o 3-4, pp. 257-278, 2002.

T. Xu, E. Sonnenthal, N. Spycher, y K. Pruess, «TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration», Comput. Geosci., vol. 32, n.o 2, pp. 145-165, 2006.

A. H. Truesdell, J. R. Haizlip, H. Armannsson, y F. d’Amore, «Origin and transport of chloride in superheated geothermal steam», Geothermics, vol. 18, n.o 1-2, pp. 295-304, 1989.

A. Kaya, «The effects of extensional structures on the heat transport mechanism: an example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey)», J. Afr. Earth Sci., vol. 108, pp. 74-88, 2015.

Y.-S. Wu y K. Pruess, «A 3-D hydrodynamic dispersion model for modeling tracer transport in Geothermal Reservoirs», Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 1998.

S. Gentier, X. Rachez, M. Peter-Borie, A. Blaisonneau, y B. Sanjuan, «Transport and flow modelling of the deep geothermal exchanger between wells at Soultz-sous-Forêts (France)», 2011.

K. Gessner, M. Kühn, V. Rath, C. Kosack, M. Blumenthal, y C. Clauser, «Coupled process models as a tool for analysing hydrothermal systems», Surv. Geophys., vol. 30, n.o 3, pp. 133-162, 2009.

B. C. Valley, «The relation between natural fracturing and stress heterogeneities in deep-seated crystalline rocks at Soultz-sous-Forêts (France)», PhD Thesis, ETH Zurich, 2007.

N. J. Kusznir y R. G. Park, «The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness», Geol. Soc. Lond. Spec. Publ., vol. 28, n.o 1, pp. 35-52, 1987.

H. Brian, «Geothermal gradients, hydrodynamics, and hydrocarbon occurrences, Alberta, Canada», AAPG Bull., vol. 68, n.o 6, pp. 713-743, 1984.

D. Rodríguez U, C. Rodríguez, S. Ramírez, y C. Flórez, «Evaluación del efecto del envejecimiento del cemento asfáltico 80-100 modificado con lignina Daniella Rodríguez U, Cristian Rodríguez, Sindy R», ingeniare, n.º 20, pp. 47–62, dic. 2016.

H. Martin, «Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas», Geology, vol. 14, n.o 9, pp. 753-756, 1986.

Descargas

Publicado

2021-05-30

Número

Sección

Artículos

Cómo citar

1.
DETERMINACIÓN DEL ORIGEN Y POTENCIAL GEOTÉRMICO DE LAS MANIFESTACIONES HIDROTERMALES UBICADAS EN LOS MUNICIPIOS DE BECERRIL (CESAR) Y CIÉNAGA (MAGDALENA). ingeniare [Internet]. 2021 May 30 [cited 2025 Feb. 23];15(30):11-28. Available from: https://revistas.unilibre.edu.co/index.php/ingeniare/article/view/7923

Artículos similares

11-20 de 189

También puede Iniciar una búsqueda de similitud avanzada para este artículo.