Bioformulado de Beauveria bassiana (ATCC MYA-4886) y Trichoderma lignorum (ATCC-8751) como biocontrolador de Atta cephalotes
DOI:
https://doi.org/10.18041/1900-3803/entramado.1.5417Palabras clave:
Hongo entomopatógeno, control biológico, hormiga arriera, Beauvearia bassiana, Trichoderma lignorumResumen
I. La hormiga arriera está asociada a pérdidas en el sector agrícola, debido a su actividad defoliadora. El control de la especie se ha venido realizado artesanal, química y biológicamente, esta última con beneficios ambientales y de bajo riesgo para la salud humana. El objetivo de esta investigación fue desarrollar una formulación biológica para el control de la hormiga arriera (Atta cephalotes) utilizando una mezcla de esporas de dos hongos filamentosos (Beauveria bassiana y Trichoderma lignorum). M. Se desarrollaron 5 formulaciones empleando las relaciones: 1:1,6:4,4:6,3:7,2:8, de cepas de B. bassiana (ATCC MYA-4886) y T. lignorum (ATCC 8751), realizándoles prueba de viabilidad, patogenicidad y pureza. La colonización de las esporas en tejidos, se evaluó mediante la exposición de ratas Wistar a la formulación y sus componentes, realizando diagnóstico veterinario (disección) y cultivo microbiológico. R. Las formulaciones presentaron viabilidad a 24 h del 95+2 %, el 100% de las formulaciones no se contaminaron después de 10 días, las formulaciones 6.4, 1:1, 2:8 infectaron la totalidad de los individuos en 6 días, las formulaciones 4:6 y 3:7 a los 8 días, no se observó colonización de las cepas en la formulación, ni en tejidos de los biomodelos. C. Las formulaciones 6.4, 1:1, 2:8 de Beauveria bassiana y Trichoderma lignorum, poseen mayor actividad infecciosa sobre la hormiga arriera (Atta cephalotes).
Descargas
Referencias
AL-HAZMI, Ahmad S, & TARIQJAVEED, Muhammad. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. In: Saudi Journal of Biological Sciences. 2016. vol. 23. no. 2. p. 288-292 https://doi.org/10.1016/j.sjbs.2015.04.007
ANDREADIS, Stefanos, et al. Efficacy of Beauveria bassiana formulations against the fungus gnat Lycoriella ingenua. In: Biological Control. 2016. vol. 103. p. 165–171. https://doi.org/10.1016/j.biocontrol.2016.09.003
BANDH, Suhaib, et al. Opportunistic fungi in lake water and fungal infections in associated human population in Dal Lake, Kashmir. In: Microbial Pathogenesis. 2016. vol. 93. p. 105–110. https://doi.org/10.1016/j.micpath.2016.01.022
DIAZ, Georgina, et al. Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. In: Industrial Crops and Products. 2015. vol. 76. p. 275–280 https://doi.org/10.1016/j.indcrop.2015.07.001
DOMINAH, Gifty, et al. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. In: Neurotoxicology. 2017. vol. 60. 54–69 https://doi.org/10.1016/j.neuro.2017.03.004
EJAZ, Masood, et al. Laboratory selection of chlorpyrifos resistance in an Invasive Pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): Cross-resistance, stability and fitness cost. In: Pesticide Biochemistry and Physiology. 2017. vol.137. p. 8–14 https://doi.org/10.1016/j.pestbp.2016.09.001
FARIA, Marcos, et al. Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. In: Journal of Invertebrate Pathology. 2015. vol. 125. p. 68–72. https://doi.org/10.1016/j.jip.2014.12.012
FERNÁNDEZ, Fernando; CASTRO, Valentina y SERNA, Francisco. Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). 1 ed. Fauna de Colombia. 2015. 253p. ISBN: 9789587752571
FREESE, Marko, et al. Fipronil and two of its transformation products in water and European eel from the river Elbe. In: Science of The Total Environment. 2016. vol. 568. p. 171–179. https://doi.org/10.1016/j.scitotenv.2016.05.210
GREENFIELD, Melinda, et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. In: Biological Control. 2016. vol. 95. p. 40–48. https://doi.org/10.1016/j.biocontrol.2016.01.002
GHOSH, Swapan & PAL, Sujoy. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. In: Environmental Monitoring and Assessment. 2016. vol. 188. no. 1. p. 1-37. https://doi.org/10.1007/s10661-015-5053-x
JIRAKKAKUL, Jiraporn, et al. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. ¡ Fungal Biology. 2017. vol. 122. no. 2-3. p. 156-171 https://doi.org/10.1016/j.funbio.2017.12.010
LACEY, Lawrence. Chapter 1 - Entomopathogens Used as Microbial Control Agents BT - Microbial Control of Insect and Mite Pests. In: Microbial Control of Insect and Mite Pests From Theory to Practice. Academic Press; 2017. p. 3–1215 .ISBN: 9780128035276
LARA, Ana, et al. Fungal Keratitis Due to Beauveria bassiana in a Contact Lenses Wearer and Review of Published Reports. In: Mycopathologia. 2016. vol.181. no. 9–10. p. 745–752. https://doi.org/10.1007/s11046-016-0027-2
MORAIS, Wagner, et al. Extracts of Ageratum conyzoides, Coriandrum sativum and Mentha piperita inhibit the growth of the symbiotic fungus of leaf-cutting ants. In: Industrial Crops and Products. 2015. vol. 65. p. 463–466 https://doi.org/10.1016/j.indcrop.2014.10.054
MIRANDA-HERNÁNDEZ, Francisco; ANGEL-CUAPIO Alejandro y LOERA-CORRAL, Octavio. 33 - Production of Fungal Spores for Biological Control. In: Current Developments in Biotechnology and Bioengineering. Elsevier; 2017. p. 757–79. ISBN: 978-0-444-63662-1
OGAWA, Akiko, et al. Successful treatment of Beauveria bassiana fungal keratitis with topical voriconazole. Journal of Infection Chemotherapy. 2016. vol. 22. no. 4. p. 257–260. https://doi.org/10.1016/j.jiac.2015.10.008
PERFETTI, Dalmiro C; QUINTERO María A, y MORENO, Pedro M.. Evaluación de la Patogenicidad Inhalatoria del Micoinsecticida Beauveria bassiana LF14 en Ratones. In: Revista De Investigaciones Veterinarias Del Perú. 2015. vol. 26. no. 4. p. 565–576. https://doi.org/10.15381/rivep.v26i4.11213
QU, Han, et al. Environmental behavior of the chiral insecticide fipronil: Enantioselective toxicity, distribution and transformation in aquatic ecosystem. In: Water Research. 2016. vol. 105. p. 138-146 https://doi.org/10.1016/j.watres.2016.08.063
QU, Han, et al. The toxicity, bioaccumulation, elimination, conversion of the enantiomers of fipronil in Anodonta woodiana. In Journal of Hazardous Materials. 2016. vol. 312. p. 169–174. https://doi.org/10.1016/j.jhazmat.2016.03.063
SÉRGIO DE BRITTO, Julio, et al. Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. In: International Journal of Research in Environmental Studies. 2016. vol. 3.p. 11–92 http://www.bluepenjournals.org/ijres/pdf/2016/May/de_Britto_et_al.pdf
STENBERG, Johan, et al. Optimizing Crops for Biocontrol of Pests and Disease. In: Trends Plant Science. 2015. vol. 20. no. 11. p. 698–712. https://doi.org/10.1016/j.tplants.2015.08.007
SUN, Min, et al. Effectiveness of Beauveria bassiana sensu lato strains for biological control against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in China. In: Parasitology International. 2013. vol. 62. no. 5. p. 412–415. https://doi.org/10.1016/j.parint.2013.04.008
TASCINI, Carlo, et al. First Case of Trichoderma longibrachiatum CIED (Cardiac Implantable Electronic Device)-Associated Endocarditis in a Non-immunocompromised Host: Biofilm Removal and Diagnostic Problems in the Light of the Current Literature. In: Mycopathologia. 2016. vol.128. no. 3-4. p. 297–303. https://doi.org/10.1007/s11046-015-9961-7
ULLAH ,Mohammad S & Un Taek, Lim. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). In: Journal of Invertebrate Pathology. 2017. vol. 148. p. 102–109. https://doi.org/10.1016/j.jip.2017.06.006
VALERO-JIMÉNEZ, Claudio, et al. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. In: Journal of Invertebrate Pathology. 2016. vol. 133. p. 41–49. https://doi.org/10.1016/j.jip.2015.11.011
VARGAS, Marleny y DUSSÁN, Jenny. Bioseguridad de cepas nativas del hongo Trichoderma spp. utilizadas en control biológico. In: Actualidades biologicas. 2002. vol. 24. no. 76. p. 37–48. https://doi.org/10.17533/udea.acbi
VILLAR David, et al. In vitro resistance to topical acaricides of the cattle tick Rhipicephalus (Boophilus) microplus from four regions of Colombia. In: CES MEDICINA VETERINARIA Y ZOOTECNIA. 2016. Vol. 11, no 3. P. 58-70 http://www.scielo.org.co/pdf/cmvz/v11n3/v11n3a07.pdf
ZANETTI, Ronald, et al. An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations. In: Forests. 2014. vol. 5, no. 3. p. 439–54. https://doi.org/10.3390/f5030439
ZHANG, Bai-zhong, et al. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren). In: Journal of Integrative Agriculture. 2016. vol. 15. no. 1. p. 135–144. https://doi.org/10.1016/S2095-3119(15)61072-3