Bioformulação de Beauveria bassiana (ATCC MYA-4886) e Trichoderma lignorum (ATCC-8751) como biocontrolador de Atta cephalotes
DOI:
https://doi.org/10.18041/1900-3803/entramado.1.5417Palavras-chave:
Fungo entomopatogênico, controle biológico, arriera formiga, Beauvearia bassiana, Trichoderma lignorumResumo
I. O formigueiro está associado a perdas no setor agrícola, devido à sua atividade desfolhadora. O controle das espécies tem sido realizado artesanalmente, quimicamente e biologicamente, este último com benefícios ambientais e baixo risco para a saúde humana. O objetivo desta pesquisa foi desenvolver uma formulação biológica para o controle de formigas (Atta cephalotes) usando uma mistura de esporos de dois fungos filamentosos (Beauveria bassiana e Trichoderma lignorum). M. 5 As formulações foram desenvolvidas usando a relação: 1: 1,6: 4,4: 6,3: 7,2: 8 estirpes de B. bassiana (ATCC MAA-4886) e T. lignorum (ATCC 8751), realizándoles Teste de viabilidade, patogenicidade e pureza. A colonização dos esporos nos tecidos foi avaliada pela exposição de ratos Wistar à formulação e seus componentes, realizando diagnóstico veterinário (dissecção) e cultura microbiológica. R. As formulações mostraram viabilidade em 24 h de 95 + 2%, 100% das formulações não foram contaminadas após 10 dias, as formulações 6,4, 1: 1, 2: 8 infectaram todos os indivíduos em 6 dias, as formulações 4: 6 e 3: 7 aos 8 dias, nenhuma colonização das cepas foi observada na formulação, nem nos tecidos dos biomodelos. C. As formulações 6.4, 1: 1, 2: 8 de Beauveria bassiana e Trichoderma lignorum, apresentam maior atividade infecciosa sobre os antirretera (Atta cephalotes).
Downloads
Referências
AL-HAZMI, Ahmad S, & TARIQJAVEED, Muhammad. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. In: Saudi Journal of Biological Sciences. 2016. vol. 23. no. 2. p. 288-292 https://doi.org/10.1016/j.sjbs.2015.04.007
ANDREADIS, Stefanos, et al. Efficacy of Beauveria bassiana formulations against the fungus gnat Lycoriella ingenua. In: Biological Control. 2016. vol. 103. p. 165–171. https://doi.org/10.1016/j.biocontrol.2016.09.003
BANDH, Suhaib, et al. Opportunistic fungi in lake water and fungal infections in associated human population in Dal Lake, Kashmir. In: Microbial Pathogenesis. 2016. vol. 93. p. 105–110. https://doi.org/10.1016/j.micpath.2016.01.022
DIAZ, Georgina, et al. Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. In: Industrial Crops and Products. 2015. vol. 76. p. 275–280 https://doi.org/10.1016/j.indcrop.2015.07.001
DOMINAH, Gifty, et al. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. In: Neurotoxicology. 2017. vol. 60. 54–69 https://doi.org/10.1016/j.neuro.2017.03.004
EJAZ, Masood, et al. Laboratory selection of chlorpyrifos resistance in an Invasive Pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): Cross-resistance, stability and fitness cost. In: Pesticide Biochemistry and Physiology. 2017. vol.137. p. 8–14 https://doi.org/10.1016/j.pestbp.2016.09.001
FARIA, Marcos, et al. Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. In: Journal of Invertebrate Pathology. 2015. vol. 125. p. 68–72. https://doi.org/10.1016/j.jip.2014.12.012
FERNÁNDEZ, Fernando; CASTRO, Valentina y SERNA, Francisco. Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). 1 ed. Fauna de Colombia. 2015. 253p. ISBN: 9789587752571
FREESE, Marko, et al. Fipronil and two of its transformation products in water and European eel from the river Elbe. In: Science of The Total Environment. 2016. vol. 568. p. 171–179. https://doi.org/10.1016/j.scitotenv.2016.05.210
GREENFIELD, Melinda, et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. In: Biological Control. 2016. vol. 95. p. 40–48. https://doi.org/10.1016/j.biocontrol.2016.01.002
GHOSH, Swapan & PAL, Sujoy. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. In: Environmental Monitoring and Assessment. 2016. vol. 188. no. 1. p. 1-37. https://doi.org/10.1007/s10661-015-5053-x
JIRAKKAKUL, Jiraporn, et al. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. ¡ Fungal Biology. 2017. vol. 122. no. 2-3. p. 156-171 https://doi.org/10.1016/j.funbio.2017.12.010
LACEY, Lawrence. Chapter 1 - Entomopathogens Used as Microbial Control Agents BT - Microbial Control of Insect and Mite Pests. In: Microbial Control of Insect and Mite Pests From Theory to Practice. Academic Press; 2017. p. 3–1215 .ISBN: 9780128035276
LARA, Ana, et al. Fungal Keratitis Due to Beauveria bassiana in a Contact Lenses Wearer and Review of Published Reports. In: Mycopathologia. 2016. vol.181. no. 9–10. p. 745–752. https://doi.org/10.1007/s11046-016-0027-2
MORAIS, Wagner, et al. Extracts of Ageratum conyzoides, Coriandrum sativum and Mentha piperita inhibit the growth of the symbiotic fungus of leaf-cutting ants. In: Industrial Crops and Products. 2015. vol. 65. p. 463–466 https://doi.org/10.1016/j.indcrop.2014.10.054
MIRANDA-HERNÁNDEZ, Francisco; ANGEL-CUAPIO Alejandro y LOERA-CORRAL, Octavio. 33 - Production of Fungal Spores for Biological Control. In: Current Developments in Biotechnology and Bioengineering. Elsevier; 2017. p. 757–79. ISBN: 978-0-444-63662-1
OGAWA, Akiko, et al. Successful treatment of Beauveria bassiana fungal keratitis with topical voriconazole. Journal of Infection Chemotherapy. 2016. vol. 22. no. 4. p. 257–260. https://doi.org/10.1016/j.jiac.2015.10.008
PERFETTI, Dalmiro C; QUINTERO María A, y MORENO, Pedro M.. Evaluación de la Patogenicidad Inhalatoria del Micoinsecticida Beauveria bassiana LF14 en Ratones. In: Revista De Investigaciones Veterinarias Del Perú. 2015. vol. 26. no. 4. p. 565–576. https://doi.org/10.15381/rivep.v26i4.11213
QU, Han, et al. Environmental behavior of the chiral insecticide fipronil: Enantioselective toxicity, distribution and transformation in aquatic ecosystem. In: Water Research. 2016. vol. 105. p. 138-146 https://doi.org/10.1016/j.watres.2016.08.063
QU, Han, et al. The toxicity, bioaccumulation, elimination, conversion of the enantiomers of fipronil in Anodonta woodiana. In Journal of Hazardous Materials. 2016. vol. 312. p. 169–174. https://doi.org/10.1016/j.jhazmat.2016.03.063
SÉRGIO DE BRITTO, Julio, et al. Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. In: International Journal of Research in Environmental Studies. 2016. vol. 3.p. 11–92 http://www.bluepenjournals.org/ijres/pdf/2016/May/de_Britto_et_al.pdf
STENBERG, Johan, et al. Optimizing Crops for Biocontrol of Pests and Disease. In: Trends Plant Science. 2015. vol. 20. no. 11. p. 698–712. https://doi.org/10.1016/j.tplants.2015.08.007
SUN, Min, et al. Effectiveness of Beauveria bassiana sensu lato strains for biological control against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in China. In: Parasitology International. 2013. vol. 62. no. 5. p. 412–415. https://doi.org/10.1016/j.parint.2013.04.008
TASCINI, Carlo, et al. First Case of Trichoderma longibrachiatum CIED (Cardiac Implantable Electronic Device)-Associated Endocarditis in a Non-immunocompromised Host: Biofilm Removal and Diagnostic Problems in the Light of the Current Literature. In: Mycopathologia. 2016. vol.128. no. 3-4. p. 297–303. https://doi.org/10.1007/s11046-015-9961-7
ULLAH ,Mohammad S & Un Taek, Lim. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). In: Journal of Invertebrate Pathology. 2017. vol. 148. p. 102–109. https://doi.org/10.1016/j.jip.2017.06.006
VALERO-JIMÉNEZ, Claudio, et al. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. In: Journal of Invertebrate Pathology. 2016. vol. 133. p. 41–49. https://doi.org/10.1016/j.jip.2015.11.011
VARGAS, Marleny y DUSSÁN, Jenny. Bioseguridad de cepas nativas del hongo Trichoderma spp. utilizadas en control biológico. In: Actualidades biologicas. 2002. vol. 24. no. 76. p. 37–48. https://doi.org/10.17533/udea.acbi
VILLAR David, et al. In vitro resistance to topical acaricides of the cattle tick Rhipicephalus (Boophilus) microplus from four regions of Colombia. In: CES MEDICINA VETERINARIA Y ZOOTECNIA. 2016. Vol. 11, no 3. P. 58-70 http://www.scielo.org.co/pdf/cmvz/v11n3/v11n3a07.pdf
ZANETTI, Ronald, et al. An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations. In: Forests. 2014. vol. 5, no. 3. p. 439–54. https://doi.org/10.3390/f5030439
ZHANG, Bai-zhong, et al. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren). In: Journal of Integrative Agriculture. 2016. vol. 15. no. 1. p. 135–144. https://doi.org/10.1016/S2095-3119(15)61072-3