Análisis de la marcha
PDF

Palabras clave

Biomecánica
condición de calzado
paso
velocidad de marcha
zancada

Cómo citar

Cámara, J. (2017). Análisis de la marcha. Entramado, 7(1), 160-173. Recuperado a partir de https://revistas.unilibre.edu.co/index.php/entramado/article/view/3385

Resumen

La marcha se define como un modo de locomoción bípedo donde se suceden los periodos de apoyo monopodal y bipodal, posibilitando el desplazamiento del centro de gravedad del cuerpo humano con un coste energético menor a cualquier otra forma de locomoción humana. La zancada forma el ciclo básico de la marcha. El análisis de las variables espacio-temporales de la marcha permite un estudio detallado de este modo de locomoción. Son abundantes los estudios científicos que analizan las variables espacio-temporales de la marcha, tales como la longitud y tiempo de paso y de zancada, los tiempos de apoyo y de balanceo, así como la cadencia de pasos y la velocidad. Los objetivos del presente estudio son aunar la información más relevante respecto a las fases en las que se divide la marcha, así como identificar las variables espaciotemporales utilizadas para su análisis. El análisis espacio-temporal de la marcha ha mostrado ser un método adecuado para un estudio detallado de la misma

PDF

Citas

1. AL-OBAIDI, SAUD; WALL, J.C.; AL-YAQOUB, A. y AL-GHANIM, M. Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. En: Journal of Rehabilitation Research and Development. No. 40 (2003); p. 361-366.

2. AMINIAN, K.; NAJAFI, B.; BÜLA, C.; LEVYRAZ, P.-F. y ROBERT, PH. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. En: Journal of Biomechanics. No. 35 (2002); p. 689-699.

3. ANDRIACCHI, T.; OGLE, J. y GALANTE, J. Walking speed as a basis for normal and abnormal gait measurements. En: Journal of Biomechanics. No. 10 (1977); p. 261-268.

4. BECKETT, R. y CHANG, K. An evaluation of the kinematics of gait by minimun energy. En: Journal of Biomechanics. No. 1 (1968); p. 147-159.

5. BEGG, R.K.; SPARROW, W.A. y LYTHGO, N.D. Time domain of foot ground reaction forces in negotiating obstacles. En: Gait and Posture. No. 7 (1998); p. 99 – 109.

6. BISHOP, M.; BRUNT, D.; PATHARE, N. y PATEL, B. The effect of velocity on the strategies used during gait termination. En: Gait and Posture. No. 20 (2004); p. 134-139.

7. BLANC, Y.; BALMER, C.; LANDIS, T. y VINGERHOETS, F. Temporal Parameters and Patterns of the Foot Roll Over During Walking: Normative Data for Healthy Adults. En: Gait and Posture. No. 10 (1999); p. 97-108.

8. BRADFORD, E.H. An examination of human gait. En: Boston Med. Surg. J. No. 137 (1897); p. 329-332.

9. BREIT, G.A. y WHALEN, R.T. Prediction of human gait parameters from temporal measures of foot-ground contact. En: Medicine & Science in Sports & Exercise. No. 29 (1997); p. 540-547.

10. BRESLER, B. y FRANKEL, J.P. The forces and moments in the leg during level walking. En: ASME. No. 72 (1950); p. 27-36.

11. CAMARA, J; MARTINEZ, R y GAVILANES, B. Reproducibilidad de las variables espacio-temporales y de las componentes de la fuerza de reacción del suelo en la marcha con botas de bombero. En: E-balonmano, Revista de Ciencias del Deporte. No. 6 (2010); p. 141-153

12. CAIRNS, M.A.; BURDETT, R.G.; PISCIOTTA, J.C. y SIMON, S.R. A biomechanical analysis of racewalking gait. En: Medicine & Science in Sports & Exercise. No. 18 (1986); p. 446-453.

13. CARMICHAEL y WHITTLE, MICHAEL W. Gender differences in the heelstrike transient. En: Gait and Posture. No. (1999); p. 144- 145.

14. CAVANAGH, PR. The biomechanics of lower extermity action in distance running. En: Foot Ankle. No. 7 (1987); p. 197-217.

15. CHAO, E.Y.; LAUGHMAN, R.K.; SCHNEIDER, E. y STAUFFER, R.N. Normative data of knee joint motion and ground reaction forces in adult level walking. En: Journal of Biomechanics. No. 16 (1983); p. 219-233.

16. CHEN, WEN-LING; O´CONNOR, J.J. y RADIN, E.L. A comparison of the gaits of Chinese and Caucasian women with particular reference to their heelstrike transients. En: Clinical Biomechanics. No. 18 (2003); p. 207-213.

17. COLLINS, J.J. y WHITTLE, MICHAEL W. Inlfuence of gait parameters on the loading of the lower limb. En: Journal of Biomedical Engineering. No. 11 (1989); p. 409-412.

18. CUTLIP, R.G.; MANCINELLI, C.; HUBER, F. y DIPASQUALE, J. Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. En: Gait and Posture. No. 12 (2000); p. 134-138.

19. DANION, F.; VARRAINE, E.; BONNARD, M. y PAILHOUS, J. Stride Variability in Human Gait: The Effect of Stride Frequency and Stride Length. En: Gait and Posture. No. 18 (2003); p. 69-77.

20. DANKLOFF, C.; RODRÍGUEZ, R. y FERNÁNDEZ VALENCIA, R. Estudio morfofuncional de la marcha humana. En: R. Biomecánica. No. 1 (1992); p. 54-58.

21. DELLA CROCE, U.; RILEY, P.O.; LELAS, J.L. y KERRIGAN, D.C. A refined review of the determinants of gait. En: Gait and Posture. No. 14 (2001); p. 79-84.

22. DIOP, M.; RAHMANI, A.; BELLI, R.; GAUTHERON, V.; GEYSSANT, A. y COTTALORDA, J. Influence of Speed Variation and Age on the Asymmetry of Ground Reaction Forces and Stride Parameters of Normal Gait in Children. En: Journal of Pediatric Orthopaedics. No. 13 (2004); p. 308-314.

23. DOMMASCH, H.S.; BRANDELL, B.R. y MURRAY, E.B. Investigation into techniques of gait analysis. En: Journal of the Biological Photographic Association. No. 40 (1972); p. 106-116.

24. ESENYEL, M.; WALDEN, G.; GITTER, A.; WALSH, N.E. y KARACAN, I. Gait characteristics with and without shoes. En: Türkiye Fiziksel Tıp ve Rehabilitasyon Dergisi. No. 50 (2004); p. 33-37.

25. FARLEY, CLAIRE T. y FERRIS, DANIEL P. Biomechanics of walking and running: center of mass movements to muscle action. En: Exercise and Sport Science Reviews. No. 26 (1988); p. 253-285.

26. FOLMAN, Y.; WOSK, J.; SHABAT, S. y GEPSTEIN, R. Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. En: Preventive Medicine. No. 39 (2004); p. 351- 354.

27. FORNER, A.; KOOPMAN, H.J.F.M. y VAN DER HELM, F.C.T. Use of pressure insoles to calculate the complete ground reaction forces. En: Journal of Biomechanics. No. 37 (2004); p. 1427- 1432.

28. GAGE, JR. An overview of normal walking. En: Instr. Course Lect. No. 39 (1990); p. 291-303.

29. GARD, S.A. y REGINA, J.K. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. En: Journal of Rehabilitation Research and Development. No. 40 (2003); p. 109-124.

30. GILL, H.S. y O´CONNOR, J.J. Heelstrike and the pathomechanics of osteoarthrosis: a pilot gait study. En: Journal of Biomechanics. No. (2003); p. 1625-1631.

31. GOBLE, D.J.; MARINO, G.W. y POTVIN, J.R. The Influence of Horizontal Velocity on Interlimb Symmetry in Normal Walking. En: Human Movement Science. No. 22 (2003); p. 271-283.

32. GRIEVE, D.W. Gait patterns and the speed of walking. En: Biomedical Engineering. No. 3 (1968); p. 119-122.

33. GRIEVE, D.W. y GEAR, R.J. The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. En: Ergonomics. No. 5 (1966); p. 379-399.

34. HAMILL, J.; BATES, B.T. y KNUTZEN, K.M. Ground reaction force symmetry during walking and running. En: Medicine & Science in Sports & Exercise. No. 55 (1984); p. 289-293.

35. HARTMANM, A.; MURER, K.; BIE, R. y BRUIN, E. Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk triaxial accelerometer system. En: Gait and Posture. No. 30 (2009); p. 351-355.

36. HAY, J.G. Cycle rate, length, and speed of progression in human locomotion. En: Journal of Applied Biomechanics. No. 18 (2002); p. 257-270.

37. HOF, A.L. Scaling gait data to body size. En: Gait and Posture. No. 23 (1996); p. 222-223.

38. HOLT, K.G.; HAMILL, J. y ANDRES, R.O. Predicting the minimal energy costs of human walking. En: Medicine & Science in Sports & Exercise. No. 23 (1991); p. 491-498.

39. INMAN, V.T. Human Locomotion. En: Canadian Medical Association Journal No. 94 (1966); p. 1047-1053.

40. JACOBS, N.J. Analysis of the vertical component of force. En: Journal of Biomechanics No. 5 (1972); p. 11-34.

41. KADABA, M.P.; RAMAKRISHNAN, H.K. y WOOTEN, M.E. Measurement of lower extremity kinematics during level walking. En: Journal of Orthopaedics Research. No. 8 (1990); p. 383-392.

42. KERRIGAN, D.C.; JENNIFER, L.L.; GOGGINS, J.; MERRIMAN, G.J.; KAPLAN, R.J. y FELSON, D.T. Effectiveness of Lateral-Wedge Insole on Knee Varus Torque in Patients With Knee Osteoarthritis. En: Archives of Physical Medical Rehabilitation. No. 83 (2002); 134-141.

43. KIMURA, T.; YAGURAMAKI, N.; FUJITA, M.; OGIUE-IKEDA, M.; NISHIZAWA, S. y UEDA, Y. Development of energy and time parameters in the walking of healthy humans infants. En: Gait and Posture. No. 5 (2004); p. 89-94.

44. LAMOREUX, LA. Kinematic measurements in walking. En: Bulletin Prosthetic Research. No. (1971); p. 3-84.

45. LEE, J.A.; CHO, S.; LEE, Y; YANG, H y LEE, J. Portable activity monitoring system for temporal parameters of gait cycles. En: Journal of Medical Systems. No. 34 (2010); p. 959-966.

46. LELAS, J.L.; MERRIMAN, G.J.; RILEY, P.O. y KERRIGAN, D.C. Predicting peak kinematic and kinetic parameters from gait speed. En: Gait and Posture. No. 17 (2003); p. 106-112.

47. MACELLARI, V.; GIACOMOZZI, C. y SAGGINI, R. Spatialtemporal Parameters of Gait: Reference Data and a Statistical Method for Normality Assessment. En: Gait and Posture. No. 10 (1999); p. 171-181.

48. MAKI, B.E. Gait changes in older adults: predictors of falls or indicators of fear? En: J Am Geriatr Soc. No. 45 (1997); p. 313- 320.

49. MARTIN, P.E. y MARSH, A.P. . Step length and frequency effects on ground reaction forces during walking. Technical note. En: Journal of Biomechanics. No. 25 (1992); p. 1237-1239.

50. MCCAW, STEVEN T.; HEIL, MARK E. y HAMILL, J. The effect of comments about shoe construction on impact forces during walking. En: Medicine & Science in Sport & Exercise. No. 32 (2000); p. 1258-1164.

51. MENZ, H.B.; LATT, M.D.; TIEDEMANN, A.; MUN SAN KWAN, M. y LORD, S.R. Reliability of the Gaitrite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. En: Gait and Posture. No. 20 (2004); p. 20-25.

52. MENZ, H.B.; LORD, S.R. y FITZPATRICK, R.C. Age-Related Differences in Walking Stability. En: Age and Ageing. No. 32 (2003); p. 137-142.

53. MILLS, P.M. y BARRETT, R.S. Swing Phase Mechanics of Healthy Young and Elderly Men. En: Human Movement Science. No. 20 (2001); p. 427-446.

54. MINETTI, A.E.; BOLDRINI, L.; BRUSAMOLIN, L.; ZAMPARO, P. y MCKEE, T. A feedback-controlled treadmill (treadmill-ondemand) and the spontaneous speed of walking and running in humans. En: Journal of Applied Physiology. No. 95 (2003); p. 838- 843.

55. MURRAY, M.P. Gait as a total pattern of movement. En: American Journal of Physical Medicine. No. 46 (1967); p. 290-333.

56. MURRAY, M.P.; DROUGHT, B. y KORY, R.C. Walking Patterns of Normal Men. En: The Journal of Bone And Joint Surgery. No. 46 (1964); p. 335-360.

57. MURRAY, M.P.; KORY, R.C.; CLARKSON, B.H. y SEPIC, S.B. Comparison of free and fast speed walking patterns of normal men. En: American Journal of Physical Medicine. No. 45 (1966); p. 8-24.

58. MURRAY, M.P.; KORY, R.C. y SEPIC, S.B. Walking patterns of normal women. En: Archives of Physical Medicine and Rehabilitation. No. (1970); p. 637-650.

59. NILSSON, J. y THORSTENSSON, A. Ground reaction forces at different speeds of human walking and running. En: Acta Physiologica Scandinavica. No. 2 (1989); p. 217-227.

60. NURSE, M.A.; HULLIGER, M.; WAKELING, J.M.; NIGG, B. y STEFANYSHIN, D. Changing the texture of the footwear can alter gait patterns. En: Journal of Electromyography and Kinesiology. No. 15 (2005); p. 496-506.

61. OCAÑA, A.; GÓMEZ PELLICO, L.; FERRER BLANCO, M. y DANKLOFF MORA, C. Análisis cinético de la marcha tras la artroplastia de rodilla. En: Rehabilitación. No. 33 (1993); p. 180- 189.

62. OEFFINGER, D.; BRAUCH, B.; CRANFILL, S.; HISLE, C.; WYNN, C.; HICKS, R., et al. Comparison of gait with and without shoes in children. En: Gait and Posture. No. 9 (1999); p. 95-100.

63. ORENDURFF, M.S.; SEGAL, A.D.; KLUTE, G.K.; BERGE, J.S.; ROHR, E.S. y KADEL, N.J. The effect of walking speed on center of mass displacement. En: Journal of Rehabilitation Research and Development. No. 41 (2004); p. 829-834.

64. OWINGS, T.M. y GRABINER, M.D. Variability of step kinematics in young and older adults. En: Gait and Posture. No. 20 (2004); p. 26-29.

65. PERRY, S.D. y LAFORTUNE, M.A. Influences of Inversion/Eversion of the Foot upon Impact Loading During Locomotion. En: Clinical Biomechanics. No. 10 (1995); p. 253-257.

66. POLIO, F.E.; GOWLING, T.L. y JACKSON, R.W. Walking boot design: a gait analysis study En: Gait and Posture. No. 7 (1998); p. 179.

67. POLIO, F.E.; GOWLING, T.L. y JACKSON, R.W. Walking boot design: a gait analysis study. En: Orthopaedics. No. 22 (1999); p. 503-507.

68. RADIN, E.L.; YANG, K.H.; RIEGGER, C.; KISH, V.L. y O´CONNOR, J. Relationship between lower limb dynamics and knee joint paint. En: Journal of Orthopaedic Research. No. 9 (1991); p. 398-405.

69. RALSTON, H.J. Energy-speed relation and optimal speed during level walking. En: Int Z angew. Physiol. einschl. Arbeitsphysiol. No. 17 (1958); p. 273-288.

70. RILEY, P.O.; DELLA CROCE, U. y CASEY, D. Propulsive adaptation to changing gait speed. En: Journal of Biomechanics. No. 34 (2001); p. 197-202.

71. RILEY, P.O. y KERRIGAN, D.C. The effect of voluntary toe-walking on body propulsion. En: Clinical Biomechanics. No. 16 (2001); p. 681-687.

72. SCHWARTZ, R.P. y HEATH, A.L. The definition of human locomotion on the basis of measurement. With description of oscillographic method. En: Journal of Bone and Joint Surgery. No. 29 (1947); p. 203-214.

73. SEKIYA, N. y NAGASAKI, H. Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio (step-length/step-rate). En: Gait and Posture. No. 7 (1998); p. 225-227.

74. SEKIYA, N.; NAGASAKI, H.; ITO, H. y FURUNA, T. Optimal walking in terms of variability in step length. En: Journal of Orthopaedics and Sports Physical Theraphy. No. 26 (1997); p. 266-272.

75. SHIBA, N.; KITAOKA, H.B.; CAHALAN, T.D. y CHAO, E.Y. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders. En: Clinical Orthopaedics and Related Research. No. (1995); p. 130-136.

76. SKORECKI, J. The design and construction of a new apparatus for measuring the vertical forces exerted in walking:a gait machine. En: Journal of Strain Analysis. No. 1 (1966); p. 1966.

77. SMITH, K.U.; MCDERMID, C.D. y SHIDEMAN, F.E. Analysis of the temporal components of motion in human gait. En: American Journal of Physical Medicine. No. 39 (1960); p. 142-151.

78. STACOFF, A.; DIEZI, C.; LUDER, G.; STÜSI, E. y KRAMES-DE QUERVAIN, I.A. Ground reaction forces on stairs: effects of stair inclination and age. En: Gait and Posture. No. (2005); p. 24-38.

79. TESIO, L.; LANZI, D. y DETREMBLEUR, C. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds. En: Clinical Biomechanics. No. 13 (1998); p. 77-82

80. THORSTENSSON, A. y ROBERTSHON, H. Adaptations to changing speed in human locomotion: speed of transition between walking and running. En: Acta Physiologica Scandinavica. No. 131 (1987); p. 211-214.

81. TITIANOVA, E.B.; PITKÄNEN, K.; PÄÄKKÖNEN, A.; SIVENIUS, J. y TARKKA, I.M. Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. En: American Journal of Physical Medicine and Rehabilitation. No. 82 (2003); p. 778-786.

82. VAN DER LINDEN, MARIËTA, L. ; KERR, A.M.; HAZLEWOOD, M.E.; HILLMAN, S.J. y ROBB, J.E. Kinematic and Kinetic Gait Characteristics of Normal Children Walking at a Range of Clinically Relevant Speeds. En: Journal of Pediatric Orthopaedics. No. (2002); p. 800-806.

83. VAN UDEN, C.J.T. y BESSER, M.P. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumeten walkway system (GAITRite). En: BMC Musculoskeletal Disorders. No. 5 (2004); 134-141.

84. VOLOSHIN, A. y WOSK, A. An In Vivo Study of Low back Pain and Shock Absorption in the Human Locomotor System. En: Journal of Biomechanics. No. 15 (1982); p. 21-27.

85. VOLOSHIN, A.; WOSK, J. y BRULL, M. Force Wave Transmission Through the Human Locomotor System. En: Journal of Biomechanical Engineering. No. 103 (1981); p. 48-50.

86. WATERS, R.L. y MULROY, S. The energy expenditure of normal and pathological gait (Review). En: Gait and Posture. No. (1999); p. 207-231.

87. WEBSTER, K.E.; WITTWER, J.E. y FELLER, J.A. Validity of the GAITrite walkway system for the measurement of averaged and individual step parameters of gait. En: Gait and Posture. No. (2004); p. 234-241

88. WHITE, R.; AGOURIS, I. y FLETCHER, E. Harmonic analysis of force platform data in normal and cerebral palsy gait. En: Clinical Biomechanics. No. 20 (2005); p. 508-516.

89. WHITTLE, M.W. Three-dimensional motion of the center of gravity of the body during walking. En: Human Movement Science. No. 16 (1997); p. 347-355.

90. WINTER, D.A. Kinematic and kinetic patterns in human gait: variability and compensating effects. En: Human Movement Science. No. 3 (1984); p. 51-76.

91. WOSK, J. y VOLOSHIN, A. Wave attenuation in skeletons of young healthy persons. En: Journal of Biomechanics. No. 14 (1981); p. 261-267.

92. YAMASHITA, T. y KATOH, R. Moving patterns of point of application of vertical resultant force during level walking. En: Journal of Biomechanics. No. 9 (1976); p. 93-99.

93. ZENI, J.A. y HIGGINSON, J.S. Gait parameters and stride-tostride variability during familiarization to walking on a split-belt treadmill. En: Clinical Biomechanics. No. 25 (2010); p. 383-386.

94. ZHANG, S.; CLOWERS, K.G. y POWELL, D. Ground reaction force and 3D biomechanical characteristics of walking in shortleg walkers. En: Gait and Posture. No. 23 (2006); p. 234-239.

95. ZIJLSTRA, W. Assessment of spatio-temporal parameters during unconstrained walking. En: European Journal of Applied Physiology. No. (2004); p. 39-44.

96. ZILJSTRA, W. ; RUTGERS, A.W.F.; HOF, A.L. y VAN WEERDEN, T.W. Voluntary and involuntary adaptation of walking to temporal and spatial constraints. En: Gait and Posture. No. 3 (1995); p. 13- 18.

Descargas

La descarga de datos todavía no está disponible.