Teratogenic effect of cadmium: From the developing embryo to the fetus

From The Developing Embryo To The Fetus

Authors

  • Juan Sebastián Calle Universidad Libre
  • Harry Pachajoa Universidad Libre
  • Jose Charry Universidad Libre
  • Robinson Pachecho Universidad Libre

DOI:

https://doi.org/10.18041/2322-634X/rcso.2.2015.4898

Keywords:

Cadmio, teratogénesis, carcinogénesis, desarrollo embrionario

Abstract

Cadmium is recognized as a toxic metal recognized by the United Nations Organization list, and also a potential teratogen in humans.

Objective: Of this study was to review the teratogenic effects of Cd in the human embryonic development from pre implantation, implantation and post implantation, and impact on the placenta and fetus.

Methodology: The levels of ingestion varies by country, being seafood and tobacco smoke the principal reported sources. This metal has a long half-life, ranging from 75 days to 26 years, and is associated in humans to many cancers.

Results: The teratogenic impact of cadmium in each stage of the developing embryo is clear in animal models, but not in humans.

Conclusions: In the pre-implantation phase it affects the progression from the two-cell stages to morula; in the implantation phase it affects the trophoblastic invasion; in post-implantation phase it affects organogenesis; in the placenta it decrease Zinc levels in the fetus. 

Downloads

Download data is not yet available.

References

UN. Geneva: International Register of Potentially Toxic Chemicals, United Nations Environment Programme. IRPTC 1, legal file (1987).

World Health Organization. Exposure to cadmium: a major public health concern. Prev. Dis. Through Heal. Environ. 3-6 (2010).

Sorkun, H. C. et al. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression. Toxicology 238, 15-22 (2007).

NRDC: Natural Resources Defense Council. NRDC: Healthy Milk, Healthy Baby -Lead, Mercury, Cadmium, and Other Metals. NRDC Issues:Health, 4/4/2015 1-6 (2015). at <http://www.nrdc.org/breastmilk/lead.asp>

Watanabe, T., Koizumi, A., Fujita, H., Kumai, M. & Ikeda, M. Role of rice in dietary cadmium intake of farming population with no known man-made pollution in Japan. Tohoku J Exp Med 144, 83-90 (1984).

Caroli, S., Menditto, A. & Chiodo, F. The international register of potentially toxic chemicals : Challenges of data collection in the field of toxicology. Env. Sci Pollut Res Int 3, 104-107 (1996).

Järup, L., Berglund, M., CG, E., Nordberg, G. & Vahter, M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Env. Heal. 24 Suppl 1, 1-51 (1998).

McKenzie-Parnell, J. M., Kjellstrom, T. E., Sharma, R. P. & Robinson, M. F. Unusually high intake and fecal output of cadmium, and fecal output of other trace elements in New Zealand adults consuming dredge oysters. Env. Res 46, 1-14 (1988).

Yurdakök, K. Environmental pollution and the fetus. J. Pediatr. neonatal Individ. Med. 1, 33-42 (2012).

Schoeters, G. et al. Cadmium and children: exposure and health effects. Acta Paediatr Suppl 95, 50-54 (2006).

Cao, X. et al. Tight junction disruption by cadmium in an in vitro human airway tissue model. Respir. Res. 16, 1-14 (2015).

Xu, J., Sheng, L., Yan, Z. & Hong, L. Blood lead and cadmium levels in children: A study conducted in Changchun, Jilin Province, China. Paediatr. Child Heal. 19, 73-76 (2014).

Lazarus, M., Prevendar Crnić, A., Bilandžić, N., Kusak, J. & Reljić, S. Cadmium, Lead, and Mercury Exposure Assessment Among Croatian Consumers of Free-Living Game. Procjena izloženosti kadmiju, olovu i živi pri konzumaciji Slob. divljači u Hrvat. 65, 281-292 (2014).

Prokopowicz, A. et al. Blood Levels of Lead, Cadmium, and Mercury in Healthy Women in their 50s in an Urban Area of Poland: A Pilot Study. Polish J. Environ. Stud. 23, 167-175 (2014).

Piadé, J.-J., Jaccard, G., Dolka, C., Belushkin, M. & Wajrock, S. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicol. Reports 2, 12-26 (2015).

Okyere, H., Voegborlo, R. B. & Agorku, S. E. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem. 179, 331-335 (2015).

Kosanovic, M. & Jokanovic, M. The association of exposure to cadmium through cigarette smoke with pregnancy-induced hypertension in a selenium deficient population. Environ. Toxicol. Pharmacol. 24, 72-78 (2007).

Chao, H.-H. et al. Arsenic, Cadmium, Lead, and Aluminium Concentrations in Human Milk at Early Stages of Lactation. Pediatr. Neonatol. 55, 127-134 (2014).

Satarug, S. & Moore, M. R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Env. Heal. Perspect 112, 1099-1103 (2004).

Abu-Hayyeh, S., Sian, M., Jones, K. G., Manuel, A. & Powell, J. T. Cadmium accumulation in aortas of smokers. Arterioscler. Thromb. Vasc. Biol. 21, 863-867 (2001).

Shuman, M. S., Voors, A. W. & Gallagher, P. N. Contribution of cigarette smoking to cadmium accumulation in man. Bull Env. Contam Toxicol 12, 570-576 (1974).

Friberg L, Piscator M, Nordberg GF, K. Cadmiumin the environment. 2nd ed. Cleveland, OH: Chemical Rubber Co. 1, (1974).

Elinder, C. G. et al. Cadmium exposure from smoking cigarettes: Variations with time and country where purchased. Env. Res 32, 220- 227 (1983).

Varaksin, A. N. et al. Some considerations concerning the theory of combined toxicity: A case study of subchronic experimental intoxication with cadmium and lead. Food Chem. Toxicol. 64, 144-156 (2014).

Matsuno, K., Kodama, Y. & Tsuchiya, K. Biological half-time and body burden of cadmium in dogs after a long-term oral administration of cadmium. Biol Trace Elem Res 29, 111-123 (1991).

Järup, L., Rogenfelt, A., Elinder, C. G., Nogawa, K. & Kjellström, T. Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Env. Heal. 9, 327-331 (1983).

Cobbina, S. J. et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J. Hazard. Mater. 294, 109-20 (2015).

IARC. Cadmium and cadmium compounds. IARC Monogr. Eval. Carcinog. Risks to Humans 100 C, 121-145 (2011).

Wibowo, A., Rahaju, F. A., Firdaus, R. T. & Suhartono, E. The Role of Urinary Cadmium and Lead Level on Pregnant Women Renal Function. J. Med. Bioeng. 3, 55-58 (2014).

Rus, C. M. & Checiu, M. Teratogenic and embryo toxic effects induced by heavy metals in mice : the quest for a recent and more precise classification of fetal skeletal anomalies in mouse strains . 19, 9330- 9338 (2014).

Luevano, J. & Damodaran, C. A review of molecular events of cadmium-induced carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 33, 183-194 (2014).

Harry Pachajoa, Yoseth Ariza, Milton Suárez, Cecilia Aguilar, Carolina Isaza, F. M. Factores asociados a defectos de disrupción vascular y su relación con los metales pesados. Iatreia Rev. médica Univ. Antioquia 23, (2015).

Labor, U. D. of. Occupational Safety and Health Administration (OSHA) Journal. Saf. Heal. 3136, (2004).

Labor, U. D. of. Occupational Health Guideline for Cadmium Dust. Natioanl Inst. Occup. Saf. Heal. 1-5 (1978).

Satarug, S., Garrett, S. H., Sens, M. A. & Sens, D. a. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 118, 182-190 (2010).

Cadmium, O. T. O., Evaluation, O., To, H. O. W. & Against, P. Cadmium Exposure From Welding and Allied. 1-3 (2002).

Hse, S. E. Exposure to cadmium in silver soldering or brazing HSE information sheet. 1-5

Mfoh, C. K., Mcalinden, J. & Hill, H. Exposure to hexavalent chromium , nickel and cadmium compounds in the electroplating industry RR963 Exposure to hexavalent chromium , nickel and cadmium compounds in the electroplating industry. (2013).

Day, S. J. & Altman, D. G. Blinding in clinical trials and other studies. Br. Med. J. 321, 2000 (2000).

Egger, M., Schneider, M. & Davey Smith, G. Meta-analysis spurious precision? Meta-analysis of observational studies. Bmj 316, 140-144 (1998).

STALENHOEF, P. A., CREBOLDER, H. F. J. M., KNOTTNERUS, J. A. & VAN DER HORST, F. G. E. M. Incidence, risk factors and consequences of falls among elderly subjects living in the community. Eur. J. Public Health 7, 328-334 (1997).

HS, Y. & ST, C. Cadmium toxicity on mouse pre-implantation zygotes in vitro: interactions of cadmium with manganese, zinc and calcium ions. Toxicology 48, 261-272 (1988).

Gordon, C. J. & Stead, A. G. Effect of nickel and cadmium chloride on autonomic and behavioral thermoregulation in mice. Neurotoxicology 7, 97-106 (1986).

Leoni, G. et al. Influence of cadmium exposure on in vitro ovine gamete dysfunction. Reprod Toxicol 16, 371-377 (2002).

hibition of the beta-catenin signaling pathway in blastocyst and uterus during the window of implantation in mice. Biol Reprod 72, 700-706 (2005).

Fang, M.-Z., Mar, W.-C. & Cho, M.-H. Cadmium-induced alterations of connexin expression in the promotion stage of in vitro two-stage transformation. Toxicology 161, 117-127 (2001).

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. & Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60-72 (2014).

Abraham, R. et al. In vitro effects of cadmium chloride on preimplantation rat embryos. Ecotoxicol Env. Saf 12, 213-219 (1986).

Matović, V., Buha, A., Ðukić-Ćosić, D. & Bulat, Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 78, 130-140 (2015).

Kippler, M. et al. Early life low-level cadmium exposure is positively associated with increased oxidative stress. Environ. Res. 112, 164-170 (2012).

Gumbiner, B. M. Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell 84, 345-357 (1996).

FJ, L. et al. Effects of cadmium on trophoblast calcium transport. Placenta 18, 341-356 (1997).

SS, P., PC, K. & RK, M. Toxicity of Cadmium in Human Trophoblast Cells (JAr Choriocarcinoma): Role

of Calmodulin and the Calmodulin Inhibitor, Zaldaride Maleate. Toxicol Appl Pharmacol 144, 10 (1997).

Goyer, R. A. & Cherian, M. G. Role of metallothionein in human placenta and rats exposed to cadmium. IARC Sci Publ 239-247 (1992).

Thompson, J. & Bannigan, J. Cadmium: toxic effects on the reproductive system and the embryo. Reprod. Toxicol. 25, 304-15 (2008).

Menoud, P. A. & Schowing, J. A preliminary study of the mechanisms of cadmium teratogenicity in chick embryo after direct action. J Toxicol Clin Exp 7, 77-84 (1987).

Sunderman, F. W., Plowman, M. C. & Hopfer, S. M. Teratogenicity of cadmium chloride in the South African frog, Xenopus laevis. IARC Sci Publ 249-256 (1992).

Webster, W. S. & Messerle, K. Changes in the mouse neuroepithelium associated with cadmium-induced neural tube defects. Teratology 21, 79-88 (1980).

Schmid, B. P., Kao, J. & Goulding, E. Evidence for reopening of the cranial neural tube in mouse embryos treated with cadmium chloride. Experientia 41, 271-272 (1985).

Padmanabhan, R. R. Light microscopic studies on the pathogenesis of exencephaly and cranioschisis induced in the rat after neural tube closure. Teratology 37, 29-36 (1988).

Feuston, M. H. & Scott, W. J. Cadmium-induced forelimb ectrodactyly: a proposed mechanism of teratogenesis. Teratology 32, 407-419 (1985).

Prasad, A. S., Oberleas, D., Wolf, P. & Horwitz, H. P. Studies on zinc deficiency: changes in trace elements and enzyme activities in tissues of zinc-deficient rats. J Clin Invest 46, 549-557 (1967).

Matthews, K. W., Mueller-Ortiz, S. L. & Wetsel, R. A. Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol 40, 785-793 (2004).

Jongen, W. M. et al. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol 114, 545-555 (1991).

Malgieri, G. et al. Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics 6, 96-104 (2014).

Bridges, C. C. & Zalups, R. K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204, 274-308 (2005).

Richards, M. P. M. P. Zinc, copper, and iron metabolism during porcine fetal development. Biol Trace Elem Res 69, 27-44 (1999).

Jacobs, R. M., Jones, A. O., Fox, M. R. & Fry, B. E. Retention of dietary cadmium and the ameliorative effect of zinc, copper, and manganese in Japanese quail. J Nutr 108, 22-32 (1978).

He, L. et al. ZIP8, member of the solute-carrier-39 (SLC39) metaltransporter family: characterization of transporter properties. Mol Pharmacol 70, 171-180 (2006).

Piasek, M., Laskey, J. W., Kostial, K. & Blanusa, M. Assessment of steroid disruption using cultures of whole ovary and/or placenta in rat and in human placental tissue. Int Arch Occup Env. Heal. 75 Suppl, S36-S44 (2002).

Piasek, M., Blanuša, M., Kostial, K. & Laskey, J. W. Placental cadmium and progesterone concentrations in cigarette smokers. Reprod Toxicol 15, 673-681 (2001).

Xenofon, M., Chrisostomos, S., Antonios, K. & Prabha, S. Toxicological impact of heavy metals on the placenta : A literature review. 6-9 (2015).

Piasek, M., Mikolić, A., Sekovanić, A., Sulimanec Grgec, A. & Jurasović, J. Cadmium in Placenta—A Valuable Biomarker of Exposure During Pregnancy in Biomedical Research. J. Toxicol. Environ. Heal. Part A 77, 1071-1074 (2014).

Fraser, M. et al. Effects of cadmium, lead and manganese on the serotonin system in human placenta. Placenta 35, A112 (2014).

Chisolm, J. C. & Handorf, C. R. Increased absorption of and sensitivity to cadmium during late pregnancy: Is there a relationship between markedly decreased maternal cadmium binding protein (metallothionein) and pregnancy-induced hypertension? Med. Hypotheses 24, 347-351 (1987).

Hinwood, A. L. et al. Cadmium, lead and mercury exposure in non smoking pregnant women. Environ. Res. 126, 118-124 (2013).

Benitez, M. a. et al. Mother-fetus transference of lead and Cadmium in rats: Involvement of metallothionein. Histol. Histopathol. 24, 1523- 1530 (2009).

Kippler, M. et al. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol. Lett. 192, 162-168 (2010).

Stillman, M. Metallothioneins and Related Chelators Series: Metal Ions in Life Sciences , Vol. 5. A. Sigel, H. Sigel, R.K.O. Sigel (Eds.), 2009, 514 p., Hardcover, ISBN: 978-1-84755-899-2.; Coord Chem Rev 253, 2780-2781 (2009).

Kawai, M. et al. Placental endocrine disruption induced by cadmium: effects on P450 cholesterol side-chain cleavage and 3betahydroxysteroid dehydrogenase enzymes in cultured human trophoblasts. Biol Reprod 67, 178-183 (2002).

Ishido, M., Tohyama, C. & Suzuki, T. Cadmium-bound metallothionein induces apoptosis in rat kidneys, but not in cultured kidney LLCPK1cells. Life Sci 64, 797-804 (1999).

Aughey, E., Fell, G. S., Scott, R. & Black, M. Histopathology of early effects of oral cadmium in the rat kidney. Environ. Health Perspect. 54, 153-61 (1984).

Sabolic, I., Ljubojevic, M., Herak-Kramberger, C. M. & Brown, D. Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Ren. Physiol 283, F1389-F1402 (2002).

MV, K., Hiramatsu, M. & Ebadi, M. Free radical scavenging actions of metallothionein isoforms I and II. Free Radic Res 29, 93-101 (1998).

Khanna, S., Mitra, S., Lakhera, P. C. & Khandelwal, S. N-acetylcysteine effectively mitigates cadmium-induced oxidative damage and cell death in Leydig cells in vitro. Drug Chem. Toxicol. 1-7 (2015). doi:10.3109/01480545.2015.1028068

Sheng, Z., Yang, W.-X. & Zhu, J.-Q. Metallothionein from Pseudosciaena crocea: expression and response to cadmium-induced injury in the testes. Ecotoxicology 24, 779-794 (2015).

Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A. & Dubey, R. S. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251, 1047- 1065 (2014).

El-Sayed, A. et al. Protective effect of zinc against cadmium toxicity on pregnant rats and their fetuses at morphological, physiological and molecular level. African J. Biotechnol. 12, 2110-2119 (2013).

Fernandez, E. L., Gustafson, A.-L., Andersson, M., Hellman, B. & Dencker, L. Cadmium-induced changes in apoptotic gene expression levels and DNA damage in mouse embryos are blocked by zinc. Toxicol. Sci. 76, 162-170 (2003).

Zhang, Z. et al. Gestational age-specific reference intervals for blood copper, zinc, calcium, magnesium, iron, lead, and cadmium during normal pregnancy. Clin. Biochem. 46, 777-780 (2013).

Eisenmann, C. J. & Miller, R. K. The placental transfer and toxicity of selenite relative to cadmium in the human term perfused placenta. Placenta 15, 883-895 (1994).

Bernard, a. Cadmium & its adverse effects on human health. Indian J. Med. Res. 128, 557-564 (2008).

Bush, P. G. et al. A Quantitative Study on the Effects of Maternal Smoking on Placental. 247-256 (2000).

Veeriah, V. et al. Cadmium-Induced Embryopathy: Nitric Oxide Rescues Teratogenic Effects of Cadmium. Toxicol. Sci. 2014-2016 (2014). doi:10.1093/toxsci/kfu258

Memon, S. & Pratten, M. Teratogenic effects of two known teratogens ( Nicotine and Cadmium ) and prevention of such effects by addition of antioxidants in chick embryos : An evaluation of two culture systems ( Micromass and in ovo culture ). 7, 27-38 (2013).

Migliaccio, O., Castellano, I., Romano, G. & Palumbo, A. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide. Aquat. Toxicol. 156, 125-134 (2014).

Dwivedi, D., Jain, M. & Jain, S. An association between maternal lead and cadmium levels and birth weight of the babies in North Indian population. 2013, 331-336 (2013).

Rodríguez-Barranco, M. et al. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci. Total Environ. 454-455, 562-577 (2013).

Milnerowicz-Nabzdyk, E. & Bizoń, A. Effect of cigarette smoking on vascular flows in pregnancies complicated by intrauterine growth restriction. Reprod. Toxicol. 50, 27-35 (2014).

Sipowicz, M., Kostrzewska, A., Laudanski, T. & Akerlund, M. Effects of cadmium on myometrial activity of the nonpregnant human. Interactions with calcium and oxytocin. Acta Obs. Gynecol Scand 74, 93-96 (1995).

Lin, C.-M., Doyle, P., Wang, D., Hwang, Y.-H. & Chen, P.-C. Does prenatal cadmium exposure affect fetal and child growth? Occup. Environ. Med. 68, 641-646 (2011).

Ji, Y. L. et al. Effects of maternal cadmium exposure during late pregnant period on testicular steroidogenesis in male offspring. Toxicol. Lett. 205, 69-78 (2011).

Castillo, P., Ibáñez, F., Guajardo, A., Llanos, M. N. & Ronco, A. M. Impact of Cadmium Exposure during Pregnancy on Hepatic Glucocorticoid Receptor Methylation and Expression in Rat Fetus. PLoS One 7, 1-9 (2012).

Johnston, J. E., Valentiner, E., Maxson, P., Miranda, M. L. & Fry, R. C. Maternal Cadmium Levels during Pregnancy Associated with Lower Birth Weight in Infants in a North Carolina Cohort. PLoS One 9, e109661 (2014).

Sun, H. et al. The effects of prenatal exposure to low-level cadmium, lead and selenium on birth outcomes. Chemosphere 108, 33-39 (2014).

Rager, J. E., Yosim, A. & Fry, R. C. Prenatal Exposure to Arsenic and Cadmium Impacts Infectious Disease-Related Genes within the Glucocorticoid Receptor Signal Transduction Pathway. Int. J. Mol. Sci. 15, 22374-22391 (2014).

Al-saleh, I. et al. International Journal of Hygiene and Interaction between cadmium ( Cd ), selenium ( Se ) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int. J. Hyg. Environ. Health 218, 66-90 (2015).

Kippler, M. et al. Research | Children ’ s Health Maternal Cadmium Exposure during Pregnancy and Size at Birth : A Prospective Cohort Study. 284, 284-289 (2012).

Xie, X. et al. The effects of low-level prenatal lead exposure on birth outcomes. Environ. Pollut. 175, 30-34 (2013).

García-Esquinas, E. et al. Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health 13, 841 (2013).

Fagerstedt, S. et al. Anthroposophic lifestyle influences the concentration of metals in placenta and cord blood. Environ. Res. 136, 88-96 (2015).

Menai, M. et al. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: The EDEN mother-child cohort study. Reprod. Toxicol. 34, 622-627 (2012).

Al-Saleh, I., Shinwari, N., Mashhour, A., Mohamed, G. E. D. & Rabah, A. Heavy metals (lead, cadmium and mercury) in maternal, cord blood and placenta of healthy women. Int. J. Hyg. Environ. Health 214, 79-101 (2011).

Published

2015-06-01

Issue

Section

Scientific or technological research article

How to Cite

Teratogenic effect of cadmium: From the developing embryo to the fetus: From The Developing Embryo To The Fetus. (2015). Revista Colombiana De Salud Ocupacional, 5(2), 21-26. https://doi.org/10.18041/2322-634X/rcso.2.2015.4898