Value Proposition Design and Artificial Intelligence: A predictive model to secure products and services

Authors

DOI:

https://doi.org/10.18041/2539-3669/gestion_libre.19.2025.12594

Keywords:

Artificial Intelligence, Value Proposition, Learning, Innovation, Predictive Model

Abstract

In an increasingly digitized and competitive business environment, the ability to design products and services that meet customer needs and are secure and personalized has become a key differentiator for organizations. This study explores the intersection between Value Proposition Design and Artificial Intelligence, proposing a theoretical and practical framework that integrates these two disciplines to optimize value creation and ensure the delivery of products and services tailored to customer expectations and needs. Methodologically, value propositions are validated using Artificial Intelligence predictive models. This technique allows for the evaluation of the effectiveness of the proposals before their implementation, dynamically adjusting them according to success predictions and changing market conditions. The results reveal that Value Proposition Design focuses on deeply understanding customers and identifying their tasks, needs, and expected benefits in order to develop value propositions that effectively solve their problems. By incorporating Artificial Intelligence techniques, such as machine learning and predictive analytics, this process can be automated and improved, allowing organizations to identify customer behavior patterns, personalize offers in real time, and foresee potential problems before they materialize. It is concluded that case studies and applied examples demonstrate how this combination can transform how companies design and deliver value, increasing customer satisfaction and competitiveness in the marketplace.

Downloads

Download data is not yet available.

References

Alonso-Rodríguez, A. M. (2024). Hacia un marco ético de la inteligencia artificial en la educación. Teoría De La Educación. Revista Interuniversitaria, 36(2), 79-98. https://doi.org/10.14201/teri.31821

Bergman, D., Huang, T., Brooks, P., Lodi, A., & Raghunathan, A. U. (2019). JANOS: An Integrated Predictive and Prescriptive Modeling Framework. ArXiv, 1-12. https://arxiv.org/abs/1911.09461

Birhane, A., Kalluri, P., Card, D., Agnew, W., Dotan, R., & Bao, M. (2022). The values encoded in machine learning research. In FAccT '22 ACM Conference on Fairness, Accountability, and Transparency (pp. 173–184). https://doi.org/10.1145/3531146.3533083

Chen, H. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data: Evolution, challenges, and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How 'big data' can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031

Frow, P., Nenonen, S., Payne, A., & Storbacka, K. (2014). Managing Co-creation Design: A Strategic Approach to Innovation. British Journal of Management, 26(3), 463–483. https://doi.org/10.1111/1467-8551.12087

Grange, C., Demazure, T., Ringeval, M., & Bourdeau, S. (2024). The Human-GenAI Value Loop in Human-Centered Innovation: Beyond the Magical Narrative. arXiv, 1-46. https://arxiv.org/abs/2407.17495

Giralt-Hernández, E. (2024). Hacia una implementación ética e inclusiva de la Inteligencia Artificial en las organizaciones: un marco multidimensional. arXiv, 1-16. https://arxiv.org/abs/2405.00225

Trischler, J., Pervan, S. J., Kelly, S. J., & Scott, D. R. (2017). The value of codesign: The effect of customer involvement in service design teams. Journal of Service Research, 21(1), 75-100. https://doi.org/10.1177/1094670517714060

Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003

Kumar, V., & Reinartz, W. (2016). Creating enduring customer value. Journal of Marketing, 80(6), 36–68. https://doi.org/10.1509/jm.15.0414

Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008

Rojas-Ahumada, K. A., López-Zavaleta, V., & Mendoza-de-los-Santos, A. C. (2023). The impact of Artificial Intelligence in improving Customer Service: A Systemic Review. Innovation and Software, 4(2), 201-222. https://doi.org/10.48168/innosoft.s12.a90

Martínez-Martínez, R. (2019). Inteligencia artificial desde el diseño: Retos y estrategias para el cumplimiento normativo. Revista Catalana de Dret Públic, 58, 64–81. https://doi.org/10.2436/rcdp.i58.2019.3317

Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2023). Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 34(1), 42–60. https://doi.org/10.1111/1467-8551.12343

Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2014). Value proposition design: How to create products and services customers want. US: Wiley. https://www.wiley.com/en-us/Value+Proposition+Design%3A+How+to+Create+Products+and+Services+Customers+Want-p-9781118968055

Ronquillo-Álvarez, L. M., & Recalde, H. (2024). Inteligencia artificial: Un recurso para el diseño de campañas publicitarias. Revista Innovarium, 1(1), 75–95. https://doi.org/10.70980/i..v1n1.2024.5

Sattele, V., Reyes, M., & Fonseca, A. (2023). La inteligencia artificial generativa en el proceso creativo y en el desarrollo de conceptos de diseño. Umática. Revista sobre Creación y Análisis de la Imagen, 6, 53–73. https://doi.org/10.24310/Umatica.2022.v5i6.17153

Soni, N., Sharma, E. K., Singh, N., & Kapoor, A. (2019). Impact of Artificial Intelligence on Businesses: From Research, Innovation, Market Deployment to Future Shifts in Business Models. arXiv, 1-38. https://arxiv.org/abs/1905.02092

Tiwari, R. (2023). Ethical and societal implications of AI and machine learning. International Journal of Scientific Research in Engineering and Management, 7(1), 1–5. https://www.researchgate.net/publication/367189529_Ethical_And_Societal_Implications_of_AI_and_Machine_Learning

Vaithilingam, P., Arawjo, I., & Glassman, E. L. (2024). Imagining a future of designing with AI: Dynamic grounding, constructive negotiation, and sustainable motivation. arXiv, 1-12. https://doi.org/10.48550/arXiv.2402.07342

Van-Doorn, J., Lemon, K. N., Mittal, V., Nass, S., Pick, D., Pirner, P., & Verhoef, P. C. (2010). Customer engagement behavior: Theoretical foundations and research directions. Journal of Service Research, 13(3), 253–266. https://doi.org/10.1177/1094670510375599

Published

2025-03-07

How to Cite

Sarián-González, M. G. (2025). Value Proposition Design and Artificial Intelligence: A predictive model to secure products and services. Gestión Y Desarrollo Libre, 10(19). https://doi.org/10.18041/2539-3669/gestion_libre.19.2025.12594