Analysis of scientific production on the applications of artificial intelligence to management control and auditing

Authors

DOI:

https://doi.org/10.18041/2539-3669/gestionlibre.17.2024.12062

Keywords:

Audit, Strategic Management, Artificial Intelligence, Mixed Methodology

Abstract

Artificial intelligence revolutionizes resource management and management control by automating processes, detecting financial anomalies, and generating accurate reports. However, the field's rapid emergence and incipient nature suggest the need to know its structure, main trends, and relationship between lines of research. This article has two main objectives. The first is to characterize the scientific production on the applications of artificial intelligence in the field, while the second is to explore the intersection between financial management, tax development, and circular economy, emphasizing how these areas converge to promote sustainability and efficiency in business projects. A mixed methodology is employed in two stages; the first used an analysis of bibliometric indicators in Scopus, while the second delved into selected articles through a thematic analysis. The field's evolution and the scientific community's growing interest are examined, although events with results similar to the original articles still predominate. The content analysis revealed the use of advanced algorithms to perform predictive and prescriptive analytics, enabling organizations to anticipate future trends and make informed strategic decisions. It is concluded that the effective integration of AI in financial and tax management optimizes resources and risk management and promotes more efficient and responsible management of resources in circular economy projects. The data consulted underline the importance of adopting innovative technologies to improve adaptability and competitiveness in a changing business environment.

Downloads

Download data is not yet available.

References

Afanador-Cubillos, N. (2023). Historia de la producción y sus retos en la era actual. Región Científica, 2(1), 202315. doi: https://doi.org/10.58763/rc202315

Agustí, M. A., & Orta-Pérez, M. (2023). Big data and artificial intelligence in the fields of accounting and auditing: A bibliometric analysis. Revista Española de Financiación y Contabilidad, 52(3), 412–438. doi: https://doi.org/10.1080/02102412.2022.2099675

Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 102433. doi: https://doi.org/10.1016/j.ijinfomgt.2021.102433

Barr‐Pulliam, D., Brown‐Liburd, H. L., & Munoko, I. (2022). The effects of person‐specific, task, and environmental factors on digital transformation and innovation in auditing: A review of the literature. Journal of International Financial Management & Accounting, 33(2), 337–374. doi: https://doi.org/10.1111/jifm.12148

Bhatt-Mishra, D., Naqvi, S., Gunasekaran, A., & Dutta, V. (2024). Prescriptive analytics applications in sustainable operations research: Conceptual framework and future research challenges. Annals of Operations Research, 337(S1), 1–1. doi: https://doi.org/10.1007/s10479-023-05251-3

Castañeda-Ramos, R., Arias-Diaz, D., & Santos-Maldonado, A. B. (2023). Control de bienes patrimoniales y su relación en el saneamiento físico e información contable en las municipalidades de Lima. Región Científica, 2(1), 202341. doi: https://doi.org/10.58763/rc202341

Castka, P., & Searcy, C. (2023). Audits and COVID-19: A paradigm shift in the making. Business Horizons, 66(1), 5–11. doi: https://doi.org/10.1016/j.bushor.2021.11.003

Ciecierski-Holmes, T., Singh, R., Axt, M., Brenner, S., & Barteit, S. (2022). Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: A systematic scoping review. Npj Digital Medicine, 5(1), 162. doi: https://doi.org/10.1038/s41746-022-00700-y

De Villiers, C., Dimes, R., & Molinari, M. (2024). How will AI text generation and processing impact sustainability reporting? Critical analysis, a conceptual framework and avenues for future research. Sustainability Accounting, Management and Policy Journal, 15(1), 96–118. doi: https://doi.org/10.1108/SAMPJ-02-2023-0097

Debortoli, D. O., & Brignole, N. B. (2024). Inteligencia empresarial para estimular el giro comercial en el microcentro de una ciudad de tamaño intermedio. Región Científica, 3(1), 2024195. doi: https://doi.org/10.58763/rc2024195

Du, S., & Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. doi: https://doi.org/10.1016/j.jbusres.2020.08.024

Falco, G., Shneiderman, B., Badger, J., Carrier, R., Dahbura, A., Danks, D., Eling, M., Goodloe, A., Gupta, J., Hart, C., Jirotka, M., Johnson, H., LaPointe, C., Llorens, A. J., Mackworth, A. K., Maple, C., Pálsson, S. E., Pasquale, F., Winfield, A., & Yeong, Z. K. (2021). Governing AI safety through independent audits. Nature Machine Intelligence, 3(7), 566–571. doi: https://doi.org/10.1038/s42256-021-00370-7

Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27(3), 938–985. doi: https://doi.org/10.1007/s11142-022-09697-x

Feliciano, C., & Quick, R. (2022). Innovative Information Technology in Auditing: Auditors’ Perceptions of Future Importance and Current Auditor Expertise. Accounting in Europe, 19(2), 311–331. doi: https://doi.org/10.1080/17449480.2022.2046283

García-Peña, M., López-Ocmin, L. S., & Romero-Carazas, R. (2023). Control interno de inventario y la gestión de resultados de un emporio comercial de la región de San Martín—Perú. Región Científica, 2(2), 202392. doi: https://doi.org/10.58763/rc202392

Giest, S. N., & Klievink, B. (2024). More than a digital system: How AI is changing the role of bureaucrats in different organizational contexts. Public Management Review, 26(2), 379–398. doi: https://doi.org/10.1080/14719037.2022.2095001

Goel, P., Jain, P., Pasman, H. J., Pistikopoulos, E. N., & Datta, A. (2020). Integration of data analytics with cloud services for safer process systems, application examples and implementation challenges. Journal of Loss Prevention in the Process Industries, 68, 104316. doi: https://doi.org/10.1016/j.jlp.2020.104316

Gonzales-Centon, J. M., Chávez-Cubas, W., Berrio-Huillcacuri, J., & Santos Maldonado, A. B. (2023). El crecimiento empresarial y su relación en la rentabilidad de una MYPE del rubro comercial en Arequipa, Perú. Región Científica, 2(2), 202387. doi: https://doi.org/10.58763/rc202387

Guatemala-Mariano, A., & Martínez-Prats, G. (2023). Capacidades tecnológicas en empresas sociales emergentes: Una ruta de impacto social. Región Científica, 2(2), 2023111. doi: https://doi.org/10.58763/rc2023111

Han, H., Shiwakoti, R. K., Jarvis, R., Mordi, C., & Botchie, D. (2023). Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. International Journal of Accounting Information Systems, 48, 100598. doi: https://doi.org/10.1016/j.accinf.2022.100598

Hassan, S., Dhali, M., Zaman, F., & Tanveer, M. (2021). Big data and predictive analytics in healthcare in Bangladesh: Regulatory challenges. Heliyon, 7(6), e07179. doi: https://doi.org/10.1016/j.heliyon.2021.e07179

Holmström, J. (2022). From AI to digital transformation: The AI readiness framework. Business Horizons, 65(3), 329–339. doi: https://doi.org/10.1016/j.bushor.2021.03.006

Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. doi: https://doi.org/10.1016/j.aac.2022.10.001

Kammerer-David, M. I., & Murgas-Téllez, B. (2024). La innovación tecnológica desde un enfoque de dinámica de sistema. Región Científica, 3(1), 2024217. doi: https://doi.org/10.58763/rc2024217

Kazim, E., & Koshiyama, A. S. (2021). A high-level overview of AI ethics. Patterns, 2(9), 100314. doi: https://doi.org/10.1016/j.patter.2021.100314

Kend, M., & Nguyen, L. A. (2020). Big Data Analytics and Other Emerging Technologies: The Impact on the Australian Audit and Assurance Profession. Australian Accounting Review, 30(4), 269–282. doi: https://doi.org/10.1111/auar.12305

Khan, M. A., Abbas, K., Su’ud, M. M., Salameh, A. A., Alam, M. M., Aman, N., Mehreen, M., Jan, A., Hashim, N. A. A. B. N., & Aziz, R. C. (2022). Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach. Sustainability, 14(16), 9964. doi: https://doi.org/10.3390/su14169964

Kitsios, F., & Kamariotou, M. (2021). Artificial Intelligence and Business Strategy towards Digital Transformation: A Research Agenda. Sustainability, 13(4), 2025. doi: https://doi.org/10.3390/su13042025

Landers, R. N., & Behrend, T. S. (2023). Auditing the AI auditors: A framework for evaluating fairness and bias in high stakes AI predictive models. American Psychologist, 78(1), 36–49. doi: https://doi.org/10.1037/amp0000972

Lehner, O. M., Ittonen, K., Silvola, H., Ström, E., & Wührleitner, A. (2022). Artificial intelligence based decision-making in accounting and auditing: Ethical challenges and normative thinking. Accounting, Auditing & Accountability Journal, 35(9), 109–135. doi: https://doi.org/10.1108/AAAJ-09-2020-4934

Liu, X., Glocker, B., McCradden, M. M., Ghassemi, M., Denniston, A. K., & Oakden-Rayner, L. (2022). The medical algorithmic audit. The Lancet Digital Health, 4(5), e384–e397. doi: https://doi.org/10.1016/S2589-7500(22)00003-6

Losbichler, H., & Lehner, O. M. (2021). Limits of artificial intelligence in controlling and the ways forward: A call for future accounting research. Journal of Applied Accounting Research, 22(2), 365–382. doi: https://doi.org/10.1108/JAAR-10-2020-0207

Mahmood, U., Shrestha, R., Bates, D. D. B., Mannelli, L., Corrias, G., Erdi, Y. E., & Kanan, C. (2021). Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems. Frontiers in Digital Health, 3, 671015. doi: https://doi.org/10.3389/fdgth.2021.671015

Manosalva-Vargas, L. M., Yalta-Cañote, L. P., & Pérez-Mamani, R. H. (2023). Costos de ventas y rentabilidad de una industria molinera en Cajamarca – Perú. Región Científica, 2, 202316. doi: https://doi.org/10.58763/rc202316

Manser-Payne, E. H., Dahl, A. J., & Peltier, J. (2021). Digital servitization value co-creation framework for AI services: A research agenda for digital transformation in financial service ecosystems. Journal of Research in Interactive Marketing, 15(2), 200–222. doi: https://doi.org/10.1108/JRIM-12-2020-0252

Mhlanga, D. (2021). Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability, 13(11), 5788. doi: https://doi.org/10.3390/su13115788

Mökander, J., & Floridi, L. (2021). Ethics-Based Auditing to Develop Trustworthy AI. Minds and Machines, 31(2), 323–327. doi: https://doi.org/10.1007/s11023-021-09557-8

Mökander, J., & Floridi, L. (2023). Operationalising AI governance through ethics-based auditing: An industry case study. AI and Ethics, 3(2), 451–468. doi: https://doi.org/10.1007/s43681-022-00171-7

Mökander, J., Morley, J., Taddeo, M., & Floridi, L. (2021). Ethics-Based Auditing of Automated Decision-Making Systems: Nature, Scope, and Limitations. Science and Engineering Ethics, 27(4), 44. doi: https://doi.org/10.1007/s11948-021-00319-4

Mökander, J., Schuett, J., Kirk, H. R., & Floridi, L. (2023). Auditing large language models: A three-layered approach. AI and Ethics. doi: https://doi.org/10.1007/s43681-023-00289-2

Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics, 167(2), 209–234. doi: https://doi.org/10.1007/s10551-019-04407-1

Muñoz-Bonilla, H. A., Menassa-Garrido, I. S., Rojas-Coronado, L., & Espinosa Rodríguez, M. A. (2024). La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica, 3(1), 2024214. https://doi.org/10.58763/rc2024214

Murikah, W., Nthenge, J. K., & Musyoka, F. M. (2024). Bias and ethics of AI systems applied in auditing—A systematic review. Scientific African, 25, e02281. doi: https://doi.org/10.1016/j.sciaf.2024.e02281

Noordin, N. A., Hussainey, K., & Hayek, A. F. (2022). The Use of Artificial Intelligence and Audit Quality: An Analysis from the Perspectives of External Auditors in the UAE. Journal of Risk and Financial Management, 15(8), 339. doi: https://doi.org/10.3390/jrfm15080339

Odilla, F. (2023). Bots against corruption: Exploring the benefits and limitations of AI-based anti-corruption technology. Crime, Law and Social Change, 80(4), 353–396. doi: https://doi.org/10.1007/s10611-023-10091-0

Palomares, I., Martínez-Cámara, E., Montes, R., García-Moral, P., Chiachio, M., Chiachio, J., Alonso, S., Melero, F. J., Molina, D., Fernández, B., Moral, C., Marchena, R., De Vargas, J. P., & Herrera, F. (2021). A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Applied Intelligence, 51(9), 6497–6527. doi: https://doi.org/10.1007/s10489-021-02264-y

Peng, Y., Ahmad, S. F., Ahmad, A. Y. A. B., Al Shaikh, M. S., Daoud, M. K., & Alhamdi, F. M. H. (2023). Riding the Waves of Artificial Intelligence in Advancing Accounting and Its Implications for Sustainable Development Goals. Sustainability, 15(19), 14165. doi: https://doi.org/10.3390/su151914165

Prokofieva, M. (2023). Integrating data analytics in teaching audit with machine learning and artificial intelligence. Education and Information Technologies, 28(6), 7317–7353. doi: https://doi.org/10.1007/s10639-022-11474-x

Rawashdeh, A. (2024). A deep learning-based SEM-ANN analysis of the impact of AI-based audit services on client trust. Journal of Applied Accounting Research, 25(3), 594–622. doi: https://doi.org/10.1108/JAAR-10-2022-0273

Robles-Carrillo, M. (2020). Artificial intelligence: From ethics to law. Telecommunications Policy, 44(6), 101937. doi: https://doi.org/10.1016/j.telpol.2020.101937

Salah, H., & Srinivas, S. (2022). Predict, then schedule: Prescriptive analytics approach for machine learning-enabled sequential clinical scheduling. Computers & Industrial Engineering, 169, 108270. doi: https://doi.org/10.1016/j.cie.2022.108270

Sánchez-Castillo, V., Pérez-Gamboa, A. J., & Gómez-Cano, C. A. (2024). Trends and evolution of Scientometric and Bibliometric research in the SCOPUS database. Bibliotecas, Anales de Investigacion, 20(1). Obtenido de http://revistas.bnjm.sld.cu/index.php/BAI/article/view/834

Seethamraju, R., & Hecimovic, A. (2023). Adoption of artificial intelligence in auditing: An exploratory study. Australian Journal of Management, 48(4), 780–800. doi: https://doi.org/10.1177/03128962221108440

Sharma, M., Luthra, S., Joshi, S., & Kumar, A. (2022). Implementing challenges of artificial intelligence: Evidence from public manufacturing sector of an emerging economy. Government Information Quarterly, 39(4), 101624. doi: https://doi.org/10.1016/j.giq.2021.101624

Siau, K., & Wang, W. (2020). Artificial Intelligence (AI) Ethics: Ethics of AI and Ethical AI. Journal of Database Management, 31(2), 74–87. doi: https://doi.org/10.4018/JDM.2020040105

Susnjak, T. (2024). Beyond Predictive Learning Analytics Modelling and onto Explainable Artificial Intelligence with Prescriptive Analytics and ChatGPT. International Journal of Artificial Intelligence in Education, 34(2), 452–482. doi: https://doi.org/10.1007/s40593-023-00336-3

Tasioulas, J. (2022). Artificial Intelligence, Humanistic Ethics. Daedalus, 151(2), 232–243. doi: https://doi.org/10.1162/daed_a_01912

Thottoli, M. M. (2024). Leveraging information communication technology (ICT) and artificial intelligence (AI) to enhance auditing practices. Accounting Research Journal, 37(2), 134–150. doi: https://doi.org/10.1108/ARJ-09-2023-0269

Tiron-Tudor, A., & Deliu, D. (2022). Reflections on the human-algorithm complex duality perspectives in the auditing process. Qualitative Research in Accounting & Management, 19(3), 255–285. doi: https://doi.org/10.1108/QRAM-04-2021-0059

Zapata-Muriel, F. A., Montoya-Zapata, S., & Montoya-Zapata, D. (2024). Dilemas éticos planteados por el auge de la inteligencia artificial: Una mirada desde el transhumanismo. Región Científica, 3, 2024225. doi: https://doi.org/10.58763/rc2024225

Published

2024-08-20

How to Cite

Núñez-Barrios, E. D., Carreño-Ríos, M., Roberto-Pérez, C., Colala-Troya, A. L., Díaz-Guerra, D., & Ramírez-Echavarría, Y. (2024). Analysis of scientific production on the applications of artificial intelligence to management control and auditing. Gestión Y Desarrollo Libre, 9(17). https://doi.org/10.18041/2539-3669/gestionlibre.17.2024.12062