The opportunity to develop operational designs for industries 4.0

Authors

  • Mario Gabriel Sarián González
  • Darwin Alexander Martínez Nieto
  • Ysrael Alberto Martínez Contreras

DOI:

https://doi.org/10.18041/2539-3669/gestionlibre.16.2023.10222

Keywords:

Crisis, Knowledge management, Pandemic, Job, Industry - 4.0

Abstract

The purpose of this paper is to reflect on the opportunities of operational designs in the industry 4.0 from the use of technology in the business sector. From the methodology of documentary analysis, qualitative and descriptive approach, its applications in business organizations of global impact are emphasized. Among the main results, it is evaluated the validity of Amazon and Exscientia in the use of operational designs in the crisis generated by the COVID 19 pandemic through the use of technology in their market operations in contrast, small companies were affected in their cost-benefit in the same period. We conclude by highlighting the benefits of operational designs in business organizational contexts for the benefit of knowledge management, which can be extrapolated to other organizational contexts.

Downloads

Download data is not yet available.

References

Agrawal, M., Dutta, S., & Millán, I. (2021). COVID-19: Un punto de inflexión para la Industria 4.0. Obtenido de https://www.mckinsey.com/business-functions/operations/our-insights/covid-19-an-inflection-point-for-industry-40/es-CL

Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems. JIM, 3(4), 16-21. Obtenido de http://hdl.handle.net/10216/81805

Amazon. (2 de Febrero de 2021). Amazon. Obtenido de https://ir.aboutamazon.com/news-release/news-release-details/2021/Amazon.com-Announces-Fourth-Quarter-Results/

Armani, A. M. Hurt D., Hwang D, McCarthy M. and Scholtz A. (2020). Low-tech solutions for the COVID-19 supply chain crisis, Nature Reviews Materials. Springer US, 5(6), 403-406. doi: 10.1038/s41578-020-0205-1

Bandrés Goldáraz, E., Conde Casado, M., & Iniesta Alemán, I. (2021). El impacto de la COVID-19 en las pequeñas y medianas empresas de comunicación en España. Retos Revista de Ciencias de la Administración y Economía, 11(21), 25-40. Doi:dhttps://doi.org/10.17163/ret.n21.2021.02

Basco, A., & Lavena, C. (2021). Competencias y habilidades para la cuarta revolución industrial en el contexto de pandemia. Obtenido de https://publications.iadb.org/es/america-latina-en-movimiento-competencias-y-habilidades-para-la-cuarta-revolucion-industrial-en-el

Bonci, A., Caizer, E., Giannini,M., Giuggioloni, F., & Prist, M. (2023). Ultra Wide Band communication for condition-based monitoring, a bridge between edge and cloud computing. Procedia Computer Science, 217, 1670-1677. doi: https://doi.org/10.1016/j.procs.2022.12.367.

Cauthen, R. (2020). 10 Reasons why a MES is Crucial for Quality Management. Obtenido de https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Impact_of_Covid-19_crisis_on_industrial_production.

Exscientia. (17 de Noviembre de 2021). Exscientia. Obtenido de https://investors.exscientia.ai/press-releases/press-release-details/2021/Exscientia-Business-Update-for-Third-Quarter-2021/default.aspx

Kumar, A., Sharma, K., Singh, H., Naugriya, S., Singh Gill, S., & Buyya, R. (2021). A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Generation Computer Systems, 115, 1-19. doi: 10.1016/j.future.2020.08.046.

Lampropoulos, G., Siakas, K., & Anastasiadis, T. (2019). Internet of things in the context of industry 4.0: an overview. International Journal of Entrepreneurial Knowledge, 7(1), 4-19. doi: 10.2478/ijek-2019-0001

Littlefield, D. (2012). Metric Handbook: Planning and Design Data. Amsterdam: Elsevier, Book Aid International , Sabre Foundation.

Mantravadi, S., Li, C., & Møller, C. (2019). Multi-agent Manufacturing Execution System (MES): Concept, Architecture & ML Algorithm for a Smart Factory Case. International Conference on Enterprise Information Systems. Obtenido de https://vbn.aau.dk/en/publications/multi-agent-manufacturing-execution-system-mes-concept-architectu

McKiensey. (Noviembre de 2019). Encuesta global sobre AI: La AI demuestra su valía, pero poco impacto a escala. Obtenido de https://www.mckinsey.com/featured-insights/destacados/el-estado-de-la-ia-en-2022-y-el-balance-de-media-decada/es

McKinsey. (2020). Encuesta globlal: el estado de la AI en 2020. Obtenido de https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2020

Meyer, H., Fuchs, F., & Klaus, T. (2009). Manufacturing Execution Systems (MES): Optimal Design, Planning, and Deployment. New York: McGraw Hill Professional.

Nascimento Junior, J. C., Santos, A. M., Cavalcante, R. M., Quintans-Junior, L. J., Walker,C. B., Borges, L. P., & Serafini, M. R. (2021). Mapping the technological landscape of SARS, MERS, and SARS-CoV-2 vaccines. Drug Development and Industrial Pharmacy, 47(4), 673-684. doi:10.1080/03639045.2021.1908343

Paez, R. (2019). ¿Es caro invertir en Industria 4.0? Es más caro no hacerlo. Obtenido de https://www.forbes.com.mx/es-caro-invertir-en-industria-4-0-es-mas-caro-no-hacerlo/

Saenz de Ugarte, B., Artiba, A., & Pellerin, R. (2009). Manufacturing execution system - A literature review. Production Planning & Control, 20(6), 525-539, doi: 10.1080/09537280902938613

Sarfraz, Z., Sarfraz, A., Iftikar, H. M., & Akhund, R. (2021). Is COVID-19 pushing us to the Fifth Industrial Revolution (Society 5.0)?. Pakistan journal of medical sciences, 37(2), 591–594. https://doi.org/10.12669/pjms.37.2.3387

SensorGo. (22 de Septiembre de 2020). SensorGo. Obtenido de https://sensorgo.mx/medicion-de-temperatura/

Yan, Li, Hai Tao Zhang, Yang Xiao, Maolin Wang, Yuqi Guo, Chuan Sun, Xiuchuan, Tang,Liang Jing, Shusheng Li, Mingyang Zhang, Ying Xiao, Haosen Cao, Yanyan Chen, Tongxin Ren, Junyang Jin, Fang Wang, Yanru Xiao, Sufang Huang, Xi Tan, Niannian Huang, Bo Jiao, Yong Zhang, Ailin Luo, Zhiguo Cao, Hui Xu, & Ye Yuan (2020). Prediction of criticality in patients with severe COVID-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. Obtenido de https://www.medrxiv.org/content/10.1101/2020.02.27.20028027v3

Published

2023-05-19 — Updated on 2023-09-18

Versions

How to Cite

Sarián González, M. G., Martínez Nieto, D. A., & Martínez Contreras, Y. A. (2023). The opportunity to develop operational designs for industries 4.0. Gestión Y Desarrollo Libre, 8(16). https://doi.org/10.18041/2539-3669/gestionlibre.16.2023.10222 (Original work published 2023)