Regulação genética da determinação sexual e diferenciação gonadal em peixes teleost
DOI:
https://doi.org/10.18041/1900-3803/entramado.1.7607Palavras-chave:
Cromossomas sexuais, Determinação sexual, Expressão genética, Peixes neotropicais, Plasticidade sexualResumo
Compreender o controlo da determinação do sexo e a diferenciação sexual nos peixes é fundamental para melhorar a gestão, produtividade, economia e conservação das espécies. O objectivo desta revisão é fornecer informações sobre os principais mecanismos molecular-genéticos de determinação e diferenciação sexual em peixes teleost. A pesquisa de informação foi realizada entre 2019 - 2021 através de bases de dados bibliográficas, utilizando frases como: "peixe de determinação sexual", "peixe de diferenciação sexual" e "peixe neotropical sexual". A selecção da informação foi efectuada tendo em consideração um máximo de 10 anos de publicação, descartando documentos considerados como teses de mestrado ou doutoramento. A determinação do sexo pode ser definida por sistemas cromossómicos tais como XX/XY, ZZ/ZW, XX/X0, ZZ/Z0, XX1, XX2 e X1X2Y ou modulada por diferentes genes autossómicos tais como cyp19a1, foxl2, figla, dmrt1, sox9, amh, gsdf, no entanto, o sexo dos peixes pode ser definido por sistemas cromossómicos tais como XX/XY, ZZ/ZW, XX/X0, ZZ/Z0, XX1, XX2 e X1X2Y, apesar dos grandes avanços na investigação molecular, o processo de regulação da determinação e diferenciação sexual nos peixes ainda não está totalmente elucidado, especialmente nas espécies Neotropicais.
Downloads
Referências
ANITHA, A.; GUPTA, Y.-R.; DEEPA, S.; NINGAPPA, M.; RAJANNA, K. B.; SENTHILKUMARAN, B. Gonadal transcriptome analysis of the common carp, Cyprinus carpio: Identification of differentially expressed genes and SSRs. In: General and Comparative Endocrinology. 2019. vol. 279. p. 67-77. https://doi.org/10.1016/J.YGCEN.2018.12.004
AROSTEGUI, M. C.; QUINN, T. P.; SEEB, L. W.; SEEB, J. E.; MCKINNEY, G. J. Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. In: Molecular Ecology. 2019. https://doi.org/10.1111/mec.15037
BAHAMONDE, P. A.; MUNKITTRICK, K. R.; MARTYNIUK, C. J. Intersex in teleost fish: Are we distinguishing endocrine disruption from natural phenomena? In: General and Comparative Endocrinology. 2013. vol. 192. p. 25-35. https://doi.org/10.1016/J.YGCEN.2013.04.005
BANH, Q. Q.; DOMINGOS, J. A.; ZENGER, K. R.; JERRY, D. R. Morphological changes and regulation of the genes dmrt1 and cyp11b during the sex differentiation of barramundi (Lates calcarifer Bloch). In: Aquaculture. 2017. vol. 479. p. 75-84. https://doi.org/10.1016/J.AQUACULTURE.2017.05.022
BHANDARI, R. K.; NAKAMURA, M.; KOBAYASHI, T.; NAGAHAMA, Y. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). In: General and Comparative Endocrinology. 2006. vol. 145(1). p. 20-24. https://doi.org/10.1016/J.YGCEN.2005.06.014
BURGOS-ACEVES, M. A.; COHEN, A.; SMITH, Y.; FAGGIO, C. Estrogen regulation of gene expression in the teleost fish immune system. In: Fish & Shellfish Immunology. 2016. vol. 58. p. 42-49. https://doi.org/10.1016/J.FSI.2016.09.006
CRESPO, B.; LAN-CHOW-WING, O.; ROCHA, A.; ZANUY, S.; GÓMEZ, A. foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. In: General and Comparative Endocrinology. 2013. vol. 194. p. 81-93. https://doi.org/10.1016/J.YGCEN.2013.08.016
DE SIQUEIRA-SILVA, D. H.; DA SILVA RODRIGUES, M.; NÓBREGA, R. H. Testis structure, spermatogonial niche and Sertoli cell efficiency in Neotropical fish. In: General and Comparative Endocrinology. 2019. vol. 273. p. 218-226. https://doi.org/10.1016/J.YGCEN.2018.09.004
DEVLIN, R. H.; NAGAHAMA, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. In: Aquaculture. 2002. vol. 208(3-4). p. 191-364. https://doi.org/10.1016/S0044-8486(02)00057-1
DIOTEL, N.; PAGE, Y. LE.; MOURIEC, K.; TONG, S.-K.; PELLEGRINI, E.; VAILLANT, C.; ANGLADE, I.; BRION, F.; PAKDEL, F.; CHUNG, B.; KAH, O. Aromatase in the brain of teleost fish: Expression, regulation and putative functions. In: Frontiers in Neuroendocrinology. 2010. vol. 31(2). p. 172-192. https://doi.org/10.1016/J.YFRNE.2010.01.003
FERNANDINO, J. I.; HATTORI, R. S. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. In: General and Comparative Endocrinology. 2019. vol. 273. p. 172-183. https://doi.org/10.1016/J.YGCEN.2018.07.002
FOWLER, B. L. S.; BUONACCORSI, V. P. Genomic characterization of sex-identification markers in Sebastes carnatus and Sebastes chrysomelas rockfishes. In: Molecular Ecology. 2016. vol. 25. p. 2165-2175. https://doi.org/doi: 10.1111/mec.13594
GALETTI, P. M.; FORESTI, F.; BERTOLLO, L. A. C.; MOREIRA FILHO, O. Karyotypic similarity in three genera (Leporinus, Leporellus, Schizodon) of the family Anostomidae (Pisces, Teleostei). In: Brazil J Genet. 1981. vol. 4.
GAVERY, M. R.; NICHOLS, K. M.; GOETZ, G. W.; MIDDLETON, M. A.; SWANSON, P. Characterization of genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural-origin steelhead, Oncorhynchus mykiss. In: G3: Genes, Genomes, Genetics. 2018. https://doi.org/10.1534/g3.118.200458
GEMMELL, N. J.; TODD, E. V.; GOIKOETXEA, A.; ORTEGA-RECALDE, O.; HORE, T. A. Natural sex change in fish. In: Current Topics in Developmental Biology. 2019. vol. 134. p. 71-117. https://doi.org/10.1016/BS.CTDB.2018.12.014
GONZALEZ, J. A.; BUENO, M. L.; FORERO, J. E. Caracterización cromosómica de dos especies icticas nativas; guapucha, (Grundulus bogotensis) y capitan, (Eremophilus mutisii), de la sabana de Bogotá. En: Acta Biológica Colombiana. 1992. vol. 2(7). p. 45-54. https://doi.org/10.15446/abc
GRÖNER, F.; HÖHNE, C.; KLEINER, W.; KLOAS, W. Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in nile tilapia (Oreochromis niloticus). In: Chemosphere. 2017. https://doi.org/10.1016/j.chemosphere.2016.09.116
HENNING, F.; MOYSÉS, C. B.; CALCAGNOTTO, D.; MEYER, A.; ALMEIDA-TOLEDO, L. F. Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). In: Heredity. 2011. vol. 106. https://doi.org/10.1038/hdy.2010.82
HU, Q.; XIAO, H.; TIAN, H.; MENG, Y. Identification and expression of cytochrome P450 genes in the Chinese giant salamander Andrias davidianus. In: Theriogenology. 2017. vol. 95. p. 62-68. https://doi.org/10.1016/J.THERIOGENOLOGY.2017.03.001
JENG, S.-R.; WU, G.-C.; YUEH, W.-S.; KUO, S.-F.; DUFOUR, S.; CHANG, C.-F.. Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel. In: General and Comparative Endocrinology. 2018. vol. 257, p. 74-85. https://doi.org/10.1016/J.YGCEN.2017.07.031
JIN, Y. H.; DAVIE, A.; MIGAUD, H. Expression pattern of nanos, piwil, dnd, vasa and pum genes during ontogenic development in Nile tilapia Oreochromis niloticus. In: Gene. 2019. vol. 688. p. 62–70. https://doi.org/10.1016/J.GENE.2018.11.078
LI, H.; XU, W.; ZHANG, N.; SHAO, C.; ZHU, Y.; DONG, Z.; WANG, N.; JIA, X.; XU, H.; CHEN, S. Two Figla homologues have disparate functions during sex differentiation in half-smooth tongue sole (Cynoglossus semilaevis). In: Scientific Reports. 2016. vol. 6, p. 28219. https://doi.org/10.1038/srep28219
LI, M; WANG, D. (2017). Gene editing nuclease and its application in tilapia. In: Science Bulletin. 2017. vol. 62(3). p. 165-173. https://doi.org/10.1016/J.SCIB.2017.01.003
LI, Meng; WANG, L.; WANG, H.; LIANG, H.; ZHENG, Y.; QIN, F.; LIU, S.; ZHANG, Y.; WANG, Z. Molecular cloning and characterization of amh, dax1 and cyp19a1a genes and their response to 17α-methyltestosterone in Pengze crucian carp. In: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2013. vol. 157(4). p. 372-381. https://doi.org/10.1016/J.CBPC.2013.03.005
LIN, Q.; HE, Y.; GUI, J. F.; MEI, J. Sox9a, not sox9b is required for normal cartilage development in zebrafish. In: Aquaculture and Fisheries. 2021. vol. 6(3). p. 254-259. https://doi.org/10.1016/j.aaf.2019.12.009
MAROSO, F.; HERMIDA, M.; MILLÁN, A.; BLANCO, A.; SAURA, M.; FERNÁNDEZ, A.; DALLA ROVERE, G.; BARGELLONI, L.; CABALEIRO, S.; VILLANUEVA, B., BOUZA, C.; MARTÍNEZ, P. Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly. In: DNA Research. 2018. https://doi.org/10.1093/dnares/dsy015
MARQUIONI, V.; BERTOLLO, L. A. C.; DINIZ, D.; CIOFFI, M. DE B. Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. In: Micron. 2013. vol. 45. p. 129-135. https://doi.org/10.1016/J.MICRON.2012.11.008
MARTÍNEZ, P.; VIÑAS, A. M.; SÁNCHEZ, L.; DÍAZ, N.; RIBAS, L.; PIFERRER, F. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. In: Frontiers in Genetics. 2014. vol. 5. p. 340. https://doi.org/10.3389/fgene.2014.00340
MIYAKE, Y.; SAKAI, Y.; KUNIYOSHI, H. Molecular Cloning and Expression Profile of Sex-Specific Genes, Figla and Dmrt1, in the Protogynous Hermaphroditic Fish, Halichoeres Poecilopterus. In: Zoological Science. 2012. vol. 29(10). p. 690-710. https://doi.org/10.2108/zsj.29.690
MOJICA, J. I.; USMA, J. S.; ÁLVAREZ-LEÓN, R.; LASSO, C. A. Libro Rojo de peces dulceacuícolas de Colombia (J. I. Mojica, J. S. Usma, R. Álvarez-León, & C. A. Lasso (eds.)). Instituto de Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. 2012. http://awsassets.panda.org/downloads/libro_rojo_peces_dulceacuicolas_de_colombia___dic_2012.pdf
MOORE, E. C.; ROBERTS, R. B. Polygenic sex determination. In: Current Biology. 2013. vol. 23(12). p R510-2. https://doi.org/10.1016/j.cub.2013.04.004
OKADA, H.; HAGIHARA, S.; YAMASHITA, K.; IJIRI, S.; ADACHI, S. (2017). Expression pattern of foxl2 and dmrt1 in gonad of Amur sturgeon Acipenser schrenckii in relation to sex differentiation. In: Aquaculture. 2017. vol. 479. p. 712-720. https://doi.org/10.1016/J.AQUACULTURE.2017.07.020
OKUBO, K.; MIYAZOE, D.; NISHIIKE, Y. A conceptual framework for understanding sexual differentiation of the teleost brain. In: General and Comparative Endocrinology. 2019. https://doi.org/10.1016/J.YGCEN.2019.02.020
PAN, Q.; GUIGUEN, Y.; HERPIN, A. Evolution of Sex Determining Genes in Fish. In: Encyclopedia of Reproduction. 2018. p. 168-175. https://doi.org/10.1016/B978-0-12-809633-8.20552-9
PÉREZ, C.; ARANEDA, C.; ESTAY, F.; DÍAZ, N. F.; VIZZIANO-CANTONNET, D. Sex hormone-binding globulin b expression in the rainbow trout ovary prior to sex differentiation. In: General and Comparative Endocrinology. 2018. vol. 259. p. 165-175. https://doi.org/10.1016/J.YGCEN.2017.11.021
PIFERRER, F. Endocrine sex control strategies for the feminization of teleost fish. In: Aquaculture. 2001. vol. 197(1-4). p. 229-281. https://doi.org/10.1016/S0044-8486(01)00589-0
PIFERRER, F. (2013). Epigenetics of sex determination and gonadogenesis. In: Developmental Dynamics. 2013. vol. 242(4). https://doi.org/10.1002/dvdy.23924
PRIETO-MOJICA, C.; GALLEGO-ALARCÓN, F.; MONCALEANO GÓMEZ, E. (2017). Pez Capitan de La Sabana (Eremophilus mutisii). En: Zoociencia. 2017. vol. 4(2). p. 4-9.
RAMALLO, M. R.; MORANDINI, L.; BIRBA, A.; SOMOZA, G. M.; PANDOLFI, M. (2017). From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish. In: Hormones and Behavior. 2017. vol. 89, p. 176-188. https://doi.org/10.1016/J.YHBEH.2017.02.005
REYHANIAN CASPILLO, N.; VOLKOVA, K.; HALLGREN, S.; OLSSON, P. E.; PORSCH-HÄLLSTRÖM, I. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation. In: Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology. 2014. https://doi.org/10.1016/j.cbpc.2014.04.003
RIBAS, L.; ROBLEDO, D.; GÓMEZ-TATO, A.; VIÑAS, A.; MARTÍNEZ, P.; PIFERRER, F. Comprehensive transcriptomic analysis of the process of gonadal sex differentiation in the turbot (Scophthalmus maximus). In: Molecular and Cellular Endocrinology. 2016. vol. 422. https://doi.org/10.1016/j.mce.2015.11.006
RODRIGUES, M.; CALABUIG, C.; ÃVILA MOREIRA, C.; CAMACHO DA SILVA, J.; BENDER ALMEIDA, D.; PEREZ GUTIERREZ, H.; MARQUES MOREIRA, H. The expression of CYP19a gene at two temperature levels during the thermosensitive period of the Nile Tilapia (Oreochromis niloticus). In: Animal Molecular Breeding. 2015. vol. 5(2). p. 1-6. https://doi.org/10.5376/amb.2015.05.0002
RODRÍGUEZ-PULIDO, J.; MIRA-LÓPEZ, T.; CRUZ-CASALLAS, P. Determinación, diferenciación sexual y pubertad en peces. En: ORINOQUIA - Universidad de Los Llanos - Villavicencio Meta. 2018. vol. 22. p. 80-91.
ROUGEOT, C.; PRIGNON, C.; NGOUANA KENGNE, C. V.; MÉLARD, C. Effect of high temperature during embryogenesis on the sex differentiation process in the Nile tilapia, Oreochromis niloticus. In: Aquaculture. 2008. vol. 276(1-4). p. 205-208. https://doi.org/10.1016/J.AQUACULTURE.2008.02.001
SALAME-MÉNDEZ, A.; VILLALPANDO-FIERRO, I. La diferenciación sexual en vertebrados hipótesis y teorías. En: Acta Zoológica Mexicana (Nueva Serie). 1998. vol. 73.
SANTI, S.; GENNOTTE, V.; MULLER, M.; MELARD, C.; TOGUYENI, A.; MANDIKI, S. N. M.; ROUGEOT, C. Sex-ratio, early sex steroid profiles and cyp19a1b, dmrt1 and foxl2 gene expressions upon high temperature treatment of undifferentiated African catfish juveniles (Clarias gariepinus). In: Aquaculture. 2019. vol. 499. p. 140-148. https://doi.org/10.1016/J.AQUACULTURE.2018.09.033
SIEGFRIED, K. R. Molecular and Chromosomal Aspects of Sex Determination. In: Reference Module in Life Sciences. 2017. https://doi.org/10.1016/B978-0-12-809633-8.03245-3
SILVA, E. L.; BORBA, R. S.; PARISE-MALTEMPI, P. P. Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution. In: Molecular Cytogenetics. 2012. vol. 5. https://doi.org/10.1186/1755-8166-5-45
SINGH, A. K. Introduction of modern endocrine techniques for the production of monosex population of fishes. In: General and Comparative Endocrinology. 2013. vol. 181. p. 146-155. https://doi.org/10.1016/J.YGCEN.2012.08.027
TESSEMA, M.; MÜLLER-BELECKE, A.; HÖRSTGEN-SCHWARK, G. Effect of rearing temperatures on the sex ratios of Oreochromis niloticus populations. In: Aquaculture. 2006. vol. 258(1-4). p. 270-277. https://doi.org/10.1016/J.AQUACULTURE.2006.04.041
TOKARZ, J.; MÖLLER, G.; HRABĚ DE ANGELIS, M.; ADAMSKI, J. Steroids in teleost fishes: A functional point of view. In: Steroids. 2015. vol. 103. p. 123-144. https://doi.org/10.1016/J.STEROIDS.2015.06.011
TRUKHINA, A. V.; LUKINA, N. A.; WACKEROW-KOUZOVA, N. D.; SMIRNOV, A. F. The variety of vertebrate mechanisms of sex determination. In: BioMed Research International. 2013. vol. 2013. https://doi.org/10.1155/2013/587460
VALDELAMAR-VILLEGAS, J. (2018). Apuntes sobre la importancia ecológica, ambiental y social de la arenca Triportheus magdalenae (Steindachner, 1878). Un ejemplo de endemismo invisibilizado. En: Intropica, Julio-Diciembre 2018. https://doi.org/http://dx.doi.org/10.21676/23897864.2628
VICARI, M. R.; ARTONI, R. F.; MOREIRA-FILHO, O.; BERTOLLO, L. A. C. Diversification of a ZZ/ ZW sex chromosome system in Characidium fish (Crenuchidae, Characiformes). In: Genetica. 2008. vol. 134 (3). p. 311-317. https://doi.org/10.1007/s10709-007-9238-2
VICARI, Marcelo Ricardo, FERREIRA ARTONI, R.; MOREIRA-FILHO, O.; BERTOLLO, L. A. C. Diversification of a ZZ/ZW sex chromosome system in Characidium fish (Crenuchidae, Characiformes). In: Genetica. 2008. vol. 147(388). p. 134:311. https://doi.org/https://doi.org/10.1007/s10709-007-9238-2
WANG, H.-P.; PIFERRER, F.; CHEN, S.L. Sex Control in Aquaculture (H.-P. Wang, F. Piferrer, & S. Chen (eds.). 2019. Vol. 1). Jhon Wiley & Sons Ltd.
WEBSTER, K. A.; SCHACH, U.; ORDAZ, A.; STEINFELD, J. S.; DRAPER, B. W.; SIEGFRIED, K. R. Dmrt1 is necessary for male sexual development in zebrafish. In: Developmental Biology. 2017. vol. 422(1). p. 33-46. https://doi.org/10.1016/J.YDBIO.2016.12.008
WEI, L.; LI, X.; LI, M.; TANG, Y.; WEI, J.; WANG, D. Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus). In: Gene. 2019. vol. 687. p. 109-115. https://doi.org/10.1016/J.GENE.2018.11.016
YAMAMOTO, Y.; HATTORI, R. S.; PATIÑO, R.; STRÜSSMANN, C. A. Environmental regulation of sex determination in fishes: Insights from Atheriniformes. In: Current Topics in Developmental Biology. 2019. vol. 134. p. 49-69. https://doi.org/10.1016/BS.CTDB.2019.02.003
YU, X.; WU, L.; XIE, L.; YANG, S.; CHARKRABORTY, T.; SHI, H.; WANG, D.; ZHOU, L. Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus). In: Molecular and Cellular Endocrinology. 2014. vol. 392(1-2). p. 152-162. https://doi.org/10.1016/J.MCE.2014.05.013
ZHANG, S.; ZHANG, X.; CHEN, X.; XU, T.; WANG, M.; QIN, Q.; ZHONG, L.; JIANG, H.; ZHU, X.; LIU, H.; SHAO, J.; ZHU, Z.; SHI, Q.; BIAN, W.; YOU, X. Construction of a high-density linkage map and QTL fine mapping for growth- And sex-related traits in channel catfish (Ictalurus punctatus). In: Frontiers in Genetics. 2019. vol. 10. 14p. https://doi.org/10.3389/fgene.2019.00251
ZHANG, Y.; ZHANG, S.; LU, H.; ZHANG, L.; ZHANG, W. Genes encoding aromatases in teleosts: Evolution and expression regulation. In: General and Comparative Endocrinology. 2014. vol. 205. p. 151-158. https://doi.org/10.1016/J.YGCEN.2014.05.008
ZHOU, L.; LUO, F.; FANG, X.; CHARKRABORTY, T.; WU, L.; WEI, J.; WANG, D. Blockage of progestin physiology disrupts ovarian differentiation in XX Nile tilapia (Oreochromis niloticus). In: Biochemical and Biophysical Research Communications. 2016. vol. 473(1). p. 29-34. https://doi.org/10.1016/J.BBRC.2016.03.045
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2021 Entramado

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.