Use of UAV for the Determination of Surface Faults in Flexible Pavements

Authors

DOI:

https://doi.org/10.18041/1794-4953/avances.2.6626

Keywords:

deterioration, uav, pavement, topography

Abstract

The objective of this study is to evaluate the surface faults present in a flexible pavement of approximately 500 m  length through the use of UAV and to demonstrate the capacity of the images captured with it. This is an applied technological research and the quantitative approach was usedfor its development  The methodology focused on three stages, planning the study area, data collection and processing, and analysis of results. The sample was random, with 13 types of potholes and fissures. Data were obtained at an elevation of 40 meters high, capturing images every 2 seconds. The processing was done through photogrammetric software based on the SfM (Structure from Motion) algorithm. As a result, it is observed that the difference between measurements ranges from 0.17 to 5 cm. The standard deviation of the set of samples was 2.32 cm. The ability of UAV imaging for surface fault extraction was demonstrated. This system provides precise measurements of deterioration geometry, which  allows the improvement of road condition monitoring.

Downloads

Download data is not yet available.

Author Biography

  • María Paula Peña Sotomayor, Pexsot Contructores
    civil engineer

References

P. L. Y. Tiong, M. Mustaffar y M. R. Hainin, “Road surface assessment of pothole severity by close range digital photogrammetry method”, World Appl. Sci. J., vol. 19, n.º 6, pp. 867-873, 2012.

C. Koch e I. Brilakis, “Pothole detection in asphalt pavement images”, Adv. Eng. Informatics, vol. 25, n.º 3, pp. 507-515, 2011.

Asamblea Nacional, “Ley orgánica del sistema nacional de infraestructura vial del transporte terrestre”, Quito, Ecuador, may de 2017.

R. Fan, U. Ozgunalp, B. Hosking, M. Liu y I. Pitas, “Pothole detection based on disparity transformation and road surface modeling”, IEEE Trans. Image Process., vol. 29, n.º 11210017, pp. 897-908, 2020. https://doi.org/10.1109/TIP.2019.2933750

A. M. Saad y K. N. Tahar, “Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV)”, Meas. J. Int. Meas. Confed., vol. 137, pp. 647-654, 2019. https://doi.org/10.1016/j.measurement.2019.01.093

G. M. Jog, C. Koch, M. Golparvar-Fard y I. Brilakis, “Pothole properties measurement through visual 2D recognition and 3D reconstruction”, Congr. Comput. Civ. Eng. Proc., junio, pp. 553-560, 2012.

T. Kim and S.-K. Ryu, “Review and analysis of pothole detection methods”, J. Emerg. Trends Comput. Inf. Sci., vol. 5, n.º 8, pp. 603-608, 2014 [en línea]. Disponible: http://www.cisjournal.org/journalofcomputing/archive/vol5no8/vol5no8_3.pdf

H. L. Bendea, P. Boccardo, S. Dequal, F. G. Tonolo, D. Marenchino y M. Piras, “Low cost UAV for post-disaster assessment”, en The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 1373-1379, 2008 [en línea]. Disponible: https://www.isprs.org/proceedings/XXXVII/congress/8_pdf/14_ThS-20/37.pdf

M. Brach, J. C. W. Chan y P. Szymański, “Accuracy assessment of different photogrammetric software for processing data from low-cost UAV platforms in forest conditions”, IForest, vol. 12, n.º 5, pp. 435-441, 2019. https://doi.org/10.3832/ifor2986-012

L. Dowling, T. Poblete, I. Hook, H. Tang, Y. Tan, W. Glenn, R. R. Unnithan, “Accurate indoor mapping using an autonomous unmanned aerial vehicle (UAV)”, 2018 [en línea]. Disponible: https://arxiv.org/ftp/arxiv/papers/1808/1808.01940.pdf

J. Tian et al., “Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest”, Int. J. Appl. Earth Obs. Geoinf., vol. 61, pp. 22-31, 2017. https://doi.org/10.1016/j.jag.2017.05.002

N. Graça, E. Mitishita y J. Gonçalves, “Photogrammetric mapping using unmanned aerial vehicle”, en International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 40, n.º 1, pp. 129-133, 2014.

F. Agüera-Vega, F. Carvajal-Ramírez y P. Martínez-Carricondo, “Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry”, J. Surv. Eng., vol. 143, n.º 2, p. 04016025, 2017. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206

DJI, “Manual de usuario Mavic Pro V1.6”, 2017 [en línea]. Disponible: https://www.dji.com/mavic/info

Agisoft LLC, “Agisoft Metashape user manual”, 2020.

G. Popescu, D. Iordan y V. Păunescu, “The resultant positional accuracy for the orthophotos obtained with unmanned aerial vehicles (UAVs)”, Agric. Agric. Sci. Procedia, vol. 10, pp. 458-464, 2016.

K. L. Cook, “An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection”, Geomorphology, vol. 278, pp. 195-208, 2017. https://doi.org/10.1016/j.geomorph.2016.11.009

Published

2020-12-01

How to Cite

Use of UAV for the Determination of Surface Faults in Flexible Pavements. (2020). Avances: Investigación En Ingeniería, 17(2 (Julio-Diciembre). https://doi.org/10.18041/1794-4953/avances.2.6626