Adaptation model based on preferences in virtual learning environments for people with special needs
Keywords:
Diversity, adaptation, user profile preferencesAbstract
In education, the integration of people withspecial needs have problems in a student group issometimes difficult because of problems with theuse of technological tools, as most of them donot consider features and needs. Also social andcommunication difficulties and limited interestin the students could be a result of the existenceany difficulty or disability. This paper presents anadaptive model that seeks to integrate adaptationfeatures of disability and educational factors in orderto introduce the student services (present topic,select learning objects more adjusted to your needsand learning style) that will facilitate their learningprocess, allowing the course to be designed is madeto measure. This adaptation model consists of thestudent profile (centered on your preferences), thedisability, the device, and pedagogical context, whichallow to adapt the deployment of information in avirtual learning environment for people with andwithout special needs. Finally, we present a casestudy that illustrates the use of this model in thecase of students with visual impairments.
Downloads
References
2. Buche C., Querrec R., De Loor P., ChevaillierP. 2004, MASCARET: A Pedagogical Multi-AgentSystem for Virtual Environments for Training,Journal IJDET, volume 2, pp. 41-61.
3. Consejería Presidencial para la política social.Plan nacional de atención a las personas condiscapacidad. Manual Operativo. Bogotá: ConsejeríaPresidencial para la Política Social, (2002).
4. J. Ewing, D. Miller: “A framework for evaluatingcomputer supported collaborative learning”.Educational Technology & Society 5(1) 2002. ISSN1436-4522.
5. Khalid, A. Basharat, A. Shahid, S. Hassan: “AnAdaptive E-learning Framework to supportingnew ways of Teachingof Teaching and Learning,”,IEEE, pp. 300-306, (2009).
6. Liu Ch.: “A Simulation-Based Experiencein Learning Structures of Bayesian Networksto Represent How Students Learn CompositeConcepts”, Lecture Notes in Computer ScienceVolume 6095, Department of Computer Science,National Chengchi University, Taiwan. (2005).
7. Meng Ch. Y.: “An Adaptive Framework forAggregating Mobile Learning Materials”. SeventhIEEE International Conference on AdvancedLearning Technologies (ICALT 2007), pp. 180-182,(2007).
8. Ministerio de Educación Nacional. La ley generalde la educación 115 de 1994. Disponible en: http://www.mineducacion.gov.co/1621/article-85906.html. (1994).
9. Niño T.: “NOMAD: Modelo para la adaptacióndel despliegue de la información orientado ausuarios nómadas.” Cuarto Congreso Colombianode Computación 4CCC., (2009).
10. O’Shea, T.: “New educational technologymodels for social and personal computing” InPro. Seventh IEEE International Conference onAdvanced Learning Technologies (ICALT 2007),pp. 11-14 (2007).
11. Peter B.: “Adaptive Hypermedia: FromIntelligent Tutoring systems to Web BasedEducation others,” In: Gauthier, G., Frasson,C., VanLehn, K. Proc. of the Int. Conference onIntelligent Tutoring Systems, LNCS, Montreal,Canada, vol. 1839, Springer- Verlag, pp. 1-7, (2000)
12. Real Academia Española. Diccionario de la realacademia española [Online]. Disponible en: http://www.rae.es
13. Sanchez E., Cambrares E., y Menéndez V.:“Adapting Mobile Access Scheme for a Legacye-Learning Platform”. Mexican InternationalConference on Computer Science. IEEE., (2008).
14. Sasakura M., S. Yamasaki: “A Framework forAdaptive e-Learning Systems in Higher Educationwith Information Visualization”, In Pro. IEEE,11th International Conference InformationVisualization (IV’07), pp. 1-11, (2007).
15. Siadaty M., F. Taghiyareh: “PALS2: PedagogicallyAdaptive Learning System based on LearningStyles”, In Pro. Seventh IEEE InternationalConference on Advanced Learning Technologies(ICALT 2007), pp. 616-618, (2007).
16. Zhao X., Ninomiya T.: “A Context-AwarePrototype System for Adaptive Learning Contentin Ubiquitous Environment” IEEE, pp. 164-168,(2008).
17. [17] Williams, C. and D’Mello, S. “PredictingStudent Knowledge Level from Domain-Independent Function and Content Words”, LNCS6095, (2010), Springer, 1-10.