Educational content adaptation in virtual courses using a fuzzy inference system with emphasis on student’s cognitive characteristics

Authors

  • Francisco Javier Arias Sánchez, Msc. Universidad Nacional
  • Julián Moreno Cadavid, Msc, PhD Universidad Nacional
  • Demetrio Arturo Ovalle Carranza Universidad Nacional

Keywords:

Fuzzy inference systems, adaptive virtual courses, student’s cognitive characteristics, FSLSM & RCMT tests

Abstract

One of the main desirable characteristics ofvirtual courses is to allow students for havingacustomized teaching/learning experience basedon adaptive mechanisms. This article specificallyfocus on the adaptation of educational contentand more specifically in the selection of learningobjects with emphasis on the followingstudents’cognitive characteristics: their learning stylesand their dominant brain hemispheres. In orderto carryout such a process we propose a fuzzyinference system based on FSLSM (Felder andSilverman Learning Style Model) and TQDT(Triadic Quotient Detector Test) tests that areused as mechanisms for measuring the students’cognitive characteristics.

Downloads

Download data is not yet available.

References

1. Chaparro, X. (2005). Análisis sistemático de lasinteracciones en el curso virtual de cálculo II y adaptaciónde la propuesta CERT para evaluación en línea basada enniveles de confianza. Trabajo de grado, UniversidadNacional de Colombia, Sede Bogotá.

2. Brusilovsky, P. & Peylo, C. (2003). Adaptiveand Intelligent Web-based Educational Systems.International Journal of Artificial Intelligence in Education,Vol. 13, pp. 156-169.

3. Peña, C. (2004) Intelligent agents to improve adaptivityin a Web-based learning environment. PhD dissertation,Universitat de Girona, Girona, España.

4. IEEE (2002). Draft Standard for Learning ObjectMetadata. En http://ltsc.ieee.org/wg12/files,Consultado en julio 9 del 2011.

5. Arias, F., Moreno, J, Ovalle, D. (2009). Modelo deinferencia difusa para la selección de objetos de aprendizaje encursos virtuales. Reunión Nacional y ExpoingenieríaACOFI 2009. Santa Marta, Colombia.

6. Keefe, J. (1979). Learning style: An overview.In: NASSP’s Student learning styles: Diagnosing andproscribing programs, Reston, USA, pp. 1-17, 1979.

7. Stash, N. (2007). Incorporating Cognitive/LearningStyles in a General-Purpose Adaptive HypermediaSystem. PhD dissertation, Technische UniversiteitEindhoven, Eindhoven, 2007.

8. Chen, S. & Macredie, R. (2002). Cognitive Stylesand Hypermedia Navigation: Development of aLearning Model. Journal of the American Society forInformation Science and Technology, 53(1), pp. 3-15.

9. De Gregori, W. (1999). En busca de una nuevanoología. Estudios Pedagógicos, No 25, pp. 71-82.

10. Felder, R. & Silverman, L. (1988). Learning andteaching styles in engineering education. EngineeringEducation, 78(7), pp. 674-681.

11. Zadeh, L. Fuzzy sets. (1965). Information andControl, 8 (3), pp. 338-353.

12. Kosko, B. (1995). Pensamiento Borroso, la cuevaciencia de la lógica borrosa. Crítica, Barcelona, 1995.13. Bojadziev, G. & Bojadziev, M. (1997). Fuzzylogic for business, finance, and management. WorldScientific Publishing Co.

14. Moreno, J., Arias F. & Ovalle D. (2009). CIA:Framework for the creation and management of AdaptiveIntelligent Courses. WCCE - World Conference onComputer in Education, Brasil.

15. Duque, N. (2009) Modelo adaptativo multiagentepara la planificación y ejecución de cursos virtualespersonalizados. Tesis de Doctorado, Medellín:Universidad Nacional de Colombia - Sede Medellín.

Downloads

Published

2013-06-01

How to Cite

Educational content adaptation in virtual courses using a fuzzy inference system with emphasis on student’s cognitive characteristics. (2013). Avances: Investigación En Ingeniería, 9(1), 59-65. https://revistas.unilibre.edu.co/index.php/avances/article/view/2735