Estudio del comportamiento térmico de un micromanipulador de partículas biológicas
Keywords:
Electrothermal modeling, dielectrophoresis, biochipsAbstract
The growing interest of microbiology researchersin order to dispose of methods to characterizeand manipulate bioparticles, has improved thedesign and fabrication of micro tools in semiconductortechnologies, based on the interaction betweenneutral particles and non-uniform electricfields, phenomenon called dielectrophoresis. Beforeof using the microstructures with bioparticlesin their original culture media of high conductivity,the microsystem response due to the electricalcurrent flowing between the electrodes must beknown. The aim of this work is the modeling of afour-meandering electrode microstructure devisedto travelling-wave dielectrophoresis applications.Due to the problem characteristics, a direct coupledelectro-thermic analysis must be performed.Aluminum microelectrodes of 5 mm in width andseparation were grown on a SiO2 substrate and correspondto the metal layer of the CMOS processcarried out at the Microelectronics National Centerin Barcelona, Spain.
Downloads
References
2. Millet LJ, Park K, Watkins NN, Hsia KJ, BashirR.. 2011. Separating beads and cells in multi-channelmicrofluidic devices using dielectrophoresis and laminarflow. J Vis Exp 48.
3. Hsiung LC, Yang CH, Chiu CL, Chen CL,Wang Y, Lee H, Cheng JY, Ho MC, Wo AM..2008. A planar interdigitated ring electrode array viadielectrophoresis for uniform patterning of cells. BiosensBioelectron 24 (4), 875 - 881.
4. Jen CP, Chen TW.. 2009. Selective trapping of liveand dead mammalian cells using insulator-based dielectrophoresiswithin open-top microstructures. BiomedMicrodevices 11 (3), 597 – 607.
5. Kuczenski RS, Chang HC, Revzin A.. 2011.Dielectrophoretic microfluidic device for the continuousAVANCES Investigación en Ingeniería Vol. 9 - No. 2 (2012) 25sorting of Escherichia coli from blood cells. Biomicrofluidics5 (3), 32005 – 3200515.
6. Fuhr G. y Wagner B.. 1994. Electric field mediatedcell manipulation in highly conductive culture media.Micro-system technologies ‘94 / 4th InternationalConference on Micro, Electro, Opto,Mechanical Systems and Components. Berlín,Germany. 407 - 416.
7. Samitier J.. 1995, Biomedical applications of microsystems.Proceedings Industrial applications ofsensors and microsystems, Barcelona, Spain.
8. F. H. Fernández Morales, J. E. Duarte y J. SamitierMartí (2005). “Potencial de los campos eléctricospara la manipulación de microorganismos”. UIS Ingenierías.Volumen 4 Número 1 Junio de 2005,Pág. 53 – 63.
9. Fuhr G. and Shirley S. G.. 1998. Biological applicationof microstructures. Topics in current chemistry194, 83 – 116.
10. Li H, Ye T, Lam KY.. 2011. Numerical modeling ofmotion trajectory and deformation behavior of a cell in anonuniform electric field. Biomicrofluidics 5 (2), 21101.
11. Bergues Pupo AE, Reyes JB, Bergues CabralesLE, Bergues Cabrales JM.. 2011. Analytical andnumerical solutions of the potential and electric fieldgenerated by different electrode arrays in a tumor tissueunder electrotherapy. Biomed Eng Online 10, 85.
12. Daniels CS, Rubinsky B.. 2011. Temperaturemodulation of electric fields in biological matter. PLoSOne 6 (6), e20877.
13. Stratton J. A.. 1941. Electromagnetic Theory. Mc-Graw Hill, New York.
14. Fuhr G., Glasser H., Müller T. y Schnelle T..1994. Cell manipulation and cultivation under a.c.electric field influence in highly conductive culture media.Biochimica et Biophysica Acta 1201, 353 - 360.
15. ANSYS User’s Manual for rev. 5.0. Volume I,Procedures, 1992. Ed. Swanson Analysis SystemsInc.
16. Schnelle T., Müller T., Voigt A., Reimer K.,Wagner B. y Fuhr G.. 1996. Adhesion-InhibitedSurfaces. Coated and Uncoated InterdigitatedElectrode Arrays in the Micrometer and SubmicrometerRange. Langmuir 12, 801 - 809.