Methods for obtaining lift and drag coefficients for a wide range of Reynolds numbers and angles of attack for wind turbine applications
Keywords:
Wind Turbine, lift coefficient, drag coefficient, panel method, extension of angles of attackAbstract
In research of wind turbine design, often isnecessary to analyze the behavior of different typesof aerodynamic profiles on their blades. Of these,is necessary to know the coefficients of lift anddrag, but this data is not available for all the profileswanted to be used to analyze the turbines.In this paper will be explore an alternative forthe determination of these coefficients and isimplemented the methodology for generatingcurved profile data.
Downloads
Download data is not yet available.
References
1. Shendahl, R.E. and Klimas, P.C. (1981),Aerodynamic characteristics of seven symmetricalairfoil sections through 180-degree angle of attackfor use in aerodynamic analysis of vertical axiswind turbines. Sandia National Laboratories ReportSAND 80-2114.
2. Selig, M.S. et al. (1995). Summary of Low-Speed Airfoil Data, Vol. 1, Vol. 2, Vol.3, SoarTechPublications, Virginia Beach, VA.
3. Kirke, B. (1998). Evaluation of self-startingvertical axis wind turbines for stand-aloneapplications. PhD Thesis, Griffith University,Faculty of Engineering and InformationTechnology, School of Engineering, Australia.
4. Deglaire, P.; Engblom, S.; Ågren, O. andBernhoff, H. (2009). Analytical solutions for asingle blade in vertical axis turbine motion in twodimensions,European Journal of Mechanics B/Fluids 28, 506–520.
5. Wang, L.B. and Zhang, L. (2007). A potentialflow 2-D vortex panel model: Applications tovertical axis straight blade tidal turbine, EnergyConversion and Management 48, 454–461.
6. XFRL5 – Tool for airfoils, Consultado en diciembrede 2010, En: http://xflr5.sourceforge.net/xflr5.htm
7. JAVAFOIL – Analysis of airfoil, Consultado endiciembre de 2010, En:http://www.mh-aerotools.de/airfoils/javafoil.htm
8. Rhie, C. M. and Chowt, W. L. (1983). NumericalStudy of the Turbulent Flow Past an Airfoil withTrailing Edge Separation, AIAA JOURNAL, Vol21, 1525–1530.
9. Montgomerie, B. (2004), Methods for rooteffects, tip effects and extending the angle ofattack range to , with applicationsto aerodynamics for blades on wind turbines andpropellers, swedish defence research agency.
2. Selig, M.S. et al. (1995). Summary of Low-Speed Airfoil Data, Vol. 1, Vol. 2, Vol.3, SoarTechPublications, Virginia Beach, VA.
3. Kirke, B. (1998). Evaluation of self-startingvertical axis wind turbines for stand-aloneapplications. PhD Thesis, Griffith University,Faculty of Engineering and InformationTechnology, School of Engineering, Australia.
4. Deglaire, P.; Engblom, S.; Ågren, O. andBernhoff, H. (2009). Analytical solutions for asingle blade in vertical axis turbine motion in twodimensions,European Journal of Mechanics B/Fluids 28, 506–520.
5. Wang, L.B. and Zhang, L. (2007). A potentialflow 2-D vortex panel model: Applications tovertical axis straight blade tidal turbine, EnergyConversion and Management 48, 454–461.
6. XFRL5 – Tool for airfoils, Consultado en diciembrede 2010, En: http://xflr5.sourceforge.net/xflr5.htm
7. JAVAFOIL – Analysis of airfoil, Consultado endiciembre de 2010, En:http://www.mh-aerotools.de/airfoils/javafoil.htm
8. Rhie, C. M. and Chowt, W. L. (1983). NumericalStudy of the Turbulent Flow Past an Airfoil withTrailing Edge Separation, AIAA JOURNAL, Vol21, 1525–1530.
9. Montgomerie, B. (2004), Methods for rooteffects, tip effects and extending the angle ofattack range to , with applicationsto aerodynamics for blades on wind turbines andpropellers, swedish defence research agency.
Downloads
Published
2010-12-01
Issue
Section
Articles
How to Cite
Methods for obtaining lift and drag coefficients for a wide range of Reynolds numbers and angles of attack for wind turbine applications. (2010). Avances: Investigación En Ingeniería, 1(13), 53-60. https://revistas.unilibre.edu.co/index.php/avances/article/view/2687