Synthesis and study of the substrate effect on morphological properties of intrinsic silicon thin films

Authors

  • Anderson Dussan Cuenca, Ph.D. Universidad Nacional
  • Fredy Giovanni Mesa Rodríguez, Ph.D. Universidad Libre
  • Camilo Hidalgo, Lic. Universidad Nacional

Keywords:

Silicon, AFM, Thin Solid Films

Abstract

In this work, microcrystalline Si intrinsicsurfaces has been grown on substrateCorning glass 7059, steel and typical wafersc-Si exhibiting (111) preferential orientation.Microcrystalline silicon samples were preparedfrom plasma enhanced chemical vapor method(PECVD). Mofology was studied by AtomicForce Microscopy (AFM). Samples Si depositedon steel revealed regions characterizedinteracting with surface and/or subsurface andedges presents on substrate. A preferred growthin ramal form of Si intrinsic was found firstlyin Silicon films on typical wafers c-Si substrate.Typical c-Si has grain sizes of 100 μm whereas Sion substrates contains much smaller crystalliteswith grains sizes closer to 10nm. The nature ofthe growing roughness of the deposited Si waswell characterized by varing between 400 and750 nm.

Downloads

Download data is not yet available.

References

Repmann, T.; Sehrbrock, B.; Zahren, C.; Siekmann,H. And Rech, B. Microcrystalline silicon thin filmsolar modules on glass, Solar Energy Mat. & SolarCells, V. 90, Issues 18-19, 23 (2006), 3047-3053.

2. Ray, Swati; Mukhopadhyay, Sumita and Jana,Tapati. Solar Energy Mat. & Solar Cells 90 (2006)631–639.

3. Badran, R.I.; Al-Hazmi, F.S.; Al-Heniti, S.; Al-Ghamdi, A.A.; Li, J. and Xiong, S. A study of opticalproperties of hydrogenated microcrystalline siliconfilms prepared by plasma enhanced chemical vapordeposition technique at different conditions ofexcited power and pressure, Vacuum, V. 83, Issue7, 24 (2009), 1023-1030.

4. Mates, T.; Bronsveld, P.C.P.; Fejfar, A.; Rezek,B.; Kocka, J.; Rath, J.K. and R.E.I. Schropp J., R.E.I.Non-Cryst. Solids 352 (2006) 1011–1015.

5. Schropp J., R.E.I.; Rath, K. and Li, H. Growthmechanism of nanocrystalline silicon at the phasetransition and its application in thin film solar cells,Journal of Crystal Growth, Journal of CrystalGrowth, V. 311, Issue 3, (2009), 760-764.

6. Li, Liwei; Li, Yuan-Min; Anna Selvan, J.A.;Delahoy, Alan E. and Levy J., Roland A. Non-Cryst. Solids 347 (2004).

7. Komoda, M.; Kamesak, K.; Masuda, A. andMatsum ra, H. Thin Solid Films 395 (2001) 198.

8. Wyrsch, N.; Torres, P.; Goerlitzer, M.; Vallat,E.; Kroll, U.; Shah, A.; Poruba, A. and Vanecek, M.Hydrogenated Microcrystalline Silicon for PhotovoltaicApplications, ICAMS18, Snowbird, UT (1999).

9. Collins, R.W.; Ferlauto, A.S.; Ferreira, G.M.; Chen,Chi; Koh, Joohyun; Koval, R.J.; Lee, Yeeheng; Pearce,J.M. and Wronski, C.R. Evolution of microstructureand phase in amorphous, protocrystalline, andmicrocrystalline silicon studied by real timespectroscopic ellipsometry, Solar Energy Materials& Solar Cells 78 (2003) 143–180.

Downloads

Published

2010-12-01

How to Cite

Synthesis and study of the substrate effect on morphological properties of intrinsic silicon thin films. (2010). Avances: Investigación En Ingeniería, 1(13), 26-34. https://revistas.unilibre.edu.co/index.php/avances/article/view/2684