An algorithm for computing a real quotient with control of decimal part using two paradigms
DOI:
https://doi.org/10.18041/1794-4953/avances.2.259Keywords:
Algoritmo, Números reales, Paradigma de programación, Programación funcional, Programación imperativaAbstract
This article presents an algorithmic approach for calculating an actual ratio by controlling the number of decimal places using cyclic and recursive processes with imperative and functional programming respectively. The purpose of this research is to demonstrate how easy is that these students achieve on their own solve problems that are known, all in pursuit of an effective learning process, with meaning and sense. Methodologically the students knew the steps that were to be performed and developed, comparatively, an algorithmic solution into two programming paradigms. We found that for students is very important to find a direct relationship between previous knowledge and new knowledge so that some are reflected in each other and that could demonstrate that computer programming, as technological expression underlie independent common models of the technology involved. We conclude that when programming students know the methodology to be used to solve a problem, follow step to that step methodology, implement and verify that the results with the requirements within the framework of some problems that are closed, learning computer programming will be very simple and effective.
Downloads
References
Attard, A., Di Ioio, E., & Geven, K. (2010).Student Centered Learning. An insight into theoryand practice. Bucarest: Lifelong learningprogramme - European Community.
Ausubel, D. (1963). Psychology of meaningfulverbal learning: an introduction to school learning.New York: Grune & Straton.
Azad, A., & Smith, D. (2014). Teaching anintroductory programming language in a generaleducation course. Journal of InformationTechnology Education: Innovations in Practice,13, 57-67.
Barriga Arceo, F., & Hernandez Rojas, G. (2002).Estrategias docentes para un aprendizajesignificativo: una interpretación constructivista.Ciudad de México: McGraw Hill Interamericana.
Blanchard, B. (2000). Ingeniería de Sistemas.Madrid (España): Isdefe.
Boyer, C. (2010). Historia de la Matemática.Madrid (España): Alianza Editorial.
Brassard, G., & Bratley, P. (2006). Fundamentosde Algoritmia. Madrid: Prentice Hall.
Bruner, J. S. (1969). Hacia un teoría de lainstrucción. Ciudad de México:Hispanoamericana.
Bruner, J. S. (2009). Actos de significado: Mas alláde la revolución cognitiva. Madrid: AlianzaEditorial.
Chavarría Olarte, M. (2004). Educación en unmundo globalizado: retos y tendencias del procesoeducativo. México: Trillas.
Coronado Padilla, J. (2013). Sistemas numéricosresiduales: fundamentos lógico matemáticos.Bogotá: Universidad de la Salle.
De Zubiría Samper, J. (2006). Los modelospedagógicos: hacia una pedagogía dialogante.Bogotá: Cooperativa Editorial Magisterio.
Felleisen, M., Findler, R., Flat, M., &Krishnamurthi, S. (2013). How to designprogramas (2a Ed. ed.). Boston: MIT Press.
Jiménez Murillo, J. (2014). Matemáticas para lacomputación. Ciudad de México: Alfaomega.
Kline, M. (2012). El pensamiento matemático dela antiguedad a nuestros días. Madrid: AlianzaEditorial.
Schildt, H. (2010). C Programming. México:McGraw Hill.
Schildt, H. (2010). The complete reference C (4a.Ed. ed.). Berkeyley, USA: McGraw Hill.
Small, G. (2011). El cerebro digital. Madird:Editorial Urano.
Trejos Buriticá, O. (2000). La Esencia de la Lógicade Programación. Pereira: Papiro.
Trejos Buriticá, O. I. (2006). Fundamentos deProgramación. Pereira: Papiro.
Van Roy, P. (2008). Concepts, Techniques andModels of Computer Programming. Estocolmo:Université catholique de Louvain.
