Medicina nuclear y su aplicación en la neuroendocrinología: revisión de la literatura

Autores/as

  • Rodrigo Andres Cardenas Clínica Imbanaco
  • Marcela Patiño Arboleda Universidad Libre Seccional Cali
  • Nathalia Buitrago Gómez Universidad Libre Seccional Cali
  • Diego Salamanca Mora Universidad Libre Seccional Cali
  • Kenyi Kuratomi Nakamura Universidad Libre Seccional Cali
  • Alin Abreu Lomba Universidad Libre Seccional Cali

DOI:

https://doi.org/10.18041/1900-7841/rcslibre.2020v15n1.7615

Palabras clave:

Medicina nuclear, Neuroendocrinología, Hipófisis

Resumen

La medicina nuclear es una especialidad médica que por su enfoque (estudios funcionales), se ha visto constantemente relacionada con la endocrinología, tanto en su diagnóstico y seguimiento, como en su tratamiento. Debido a su capacidad para reflejar la función de diferentes órganos, ha permitido su continua implementación en distintos tipos de lesiones en el área de neuroendocrinología, ayudando a mejorar la exactitud diagnóstica de las imágenes como la Resonancia Magnética (RM). Su uso va desde tumores hipofisiarios funcionales, patología inflamatoria, enfoque de manejo quirúrgico, e incluso secreción ectópica de hormonas hipofisarias que en sí misma constituye una entidad infrecuente derivada en su gran mayoría de tumores extrapituitarios. El objetivo del presente artículo es realizar una actualización de la aplicación de la medicina nuclear en el campo de la neuroendocrinología, demostrando la evidencia que existe al respecto y resaltando la importancia de esta área de la medicina en la práctica médica actual.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Rodrigo Andres Cardenas , Clínica Imbanaco

    Médico nuclear, Clínica Imbanaco, Cali, Colombia. Medico y cirujano, Universidad del Bosque, Colombia, Medico nuclear, Hospital Universitario Vall d’Hebron, España. 

  • Marcela Patiño Arboleda, Universidad Libre Seccional Cali

    Residente de Medicina Interna, Medico y cirujano, Grupo Interinstitucional de Medicina Interna (GIMI), Universidad Libre Seccional Cali, Colombia. e

  • Nathalia Buitrago Gómez, Universidad Libre Seccional Cali

    Residente de Medicina Interna, Médico y cirujano, Grupo Interinstitucional de Medicina Interna (GIMI), Universidad Libre Seccional Cali, Colombia. 

  • Diego Salamanca Mora, Universidad Libre Seccional Cali

    Residente de Medicina Interna, Universidad Libre Seccional Cali, Colombia, Médico y cirujano, Universidad Militar Nueva Granada, Colombia. Grupo interinstitucional de Medicina Interna (GIMI). 

  • Kenyi Kuratomi Nakamura, Universidad Libre Seccional Cali

    Residente de Medicina Interna, Médico General, Grupo Interinstitucional de Medicina Interna (GIMI), Universidad Libre seccional Cali, Colombia. 

  • Alin Abreu Lomba, Universidad Libre Seccional Cali

    Docente, Postgrado de Medicina Interna, Universidad Libre Seccional Cali, Colombia. Médico Endocrinólogo, Universidad de la Habana, Cuba, Grupo Interinstitucional Medicina Interna (GIMI 1).

Referencias

Piciu D, Irimie A. Principles of Nuclear Medicine. In: Nuclear Endocrinology Springer, Berlin. 2012. p. 3-50. https://doi.org/10.1007/978-3-642-25014-9

Prakash D. Introduction to Nuclear Medicine. In: Nuclear Medicine Springer, New Delhi. 2014. p. 1-8. Https://doi.org/10.1007/978-81-322-1826-5

Townsend DW. Combined PET/CT: the historical perspective. Semin Ultrasound CT MR. 2008;29(4):232-5. Https://doi.org/10.1053/j.sult.2008.05.006

Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. Spect/Ct. J Nucl Med. 2008;49(8):1305-19. Https://doi.org/ 10.2967/jnumed.107.050195

Wong KK, Kandathil A, Marzola MC, Gross MD, Rubello D. Nuclear medicine imaging of endocrine neoplasms. Nucl Med Commun. 2014;35(1):1-19. Https://doi.org/ 10.1007/s00259-006-0265-5

Caroli P, Nanni C, Rubello D, Alavi A, Fanti S. Non-FDG PET in the practice of oncology. Indian J Cancer. 2010;47(2):120-5. Https://doi.org/ 10.4103/0019-509X.62998

Piciu D. Radiopharmaceuticals. In: Nuclear Endocrinology Springer, Berlin. 2012. p. 37-50. Https://doi.org/ 10.1007/978-3-642-25014-9

Iglesias P, Cardona J, Díez JJ. The pituitary in nuclear medicine imaging. Eur J Intern Med. 2019;68(July):6-12. Https://doi.org/ 10.1016/j.ejim.2019.08.008

Campeau RJ, David O, Dowling AM. Pituitary Adenoma Detected on FDG Positron Emission Tomography in a Patient with Mucosa-Associated Lymphoid Tissue Lymphoma. Clin Nucl Med. 2003;28(4):296-8. Https://doi.org/ 10.1097/01.RLU.0000057554.55930.05

Alzahrani AS, Farhat R, Al-Arifi A, Al-Kahtani N, Kanaan I, Abouzied M. The diagnostic value of fused positron emission tomography/computed tomography in the localization of adrenocorticotropin-secreting pituitary adenoma in Cushing’s disease. Pituitary. 2009;12(4):309-14. Https://doi.org/ 10.1007/s11102-009-0180-4

Seok H, Lee EY, Choe EY, Yang WI, Kim JY, Shin DY, et al. Analysis of 18F-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions. Korean J Intern Med. 2013;28(1):81-8. Https://doi.org/ 10.3904/kjim.2013.28.1.81

Hyun SH, Choi JY, Lee KH, Choe YS, Kim BT. Incidental focal 18F-FDG uptake in the pituitary gland: Clinical significance and differential diagnostic criteria. J Nucl Med. 2011;52(4):547-50. Https://doi.org/ 10.2967/jnumed.110.083733

Orija IB, Weil RJ, Hamrahian AH. Pituitary incidentaloma. Best Pract Res Clin Endocrinol Metab. 2012;26(1):47-68. Https://doi.org/ 10.1016/j.beem.2011.07.003

Ju H, Zhou J, Pan Y, Lv J, Zhang Y. Evaluation of pituitary uptake incidentally identified on 18F-FDG PET/CT scan. Oncotarget. 2017;8(33):55544-9. Https://doi.org/ 10.18632/oncotarget.15417

Mahdi ES, Webb RL, Whitehead MT. Prevalence of pituitary cysts in children using modern magnetic resonance imaging techniques. Pediatr Radiol. 2019;49(13):1781-7. Https://doi.org/ 10.1007/s00247-019-04479-1

van der Hiel B, Blank CU, Haanen JBAG, Stokkel MPM. Detection of early onset of hypophysitis by (18)F-FDG PET-CT in a patient with advanced stage melanoma treated with ipilimumab. Clin Nucl Med. 2013;38(4):182-4.

Kong Z, Wang Y, Ma W, Cheng X. Role of 18F-fluorodeoxyglucose (FDG) and 18F-2-fluorodeoxy sorbitol (FDS) in autoimmune hypophysitis: A case report. BMC Endocr Disord. 2020;20(1):1-5. https://doi.org/10.1016/j.critrevonc.2020.103044

Wang H, Hou B, Lu L, Feng M, Zang J, Yao S, et al. PET/MRI in the diagnosis of hormone-producing pituitary microadenoma: A prospective pilot study. J Nucl Med. 2018;59(3):523-8. Https://doi.org/ 10.2967/jnumed.117.191916

Wang J, Foley M, Kuker R. Pituitary Adenoma on 18F-Fluciclovine PET/CT. Clin Nucl Med. 2020;45(1):E65-6. Https://doi.org/ 10.1097/RLU.0000000000002777

Wang Z, Mao Z, Zhang X, He D, Wang X, Du Q, et al. Utility of 13N-Ammonia PET/CT to Detect Pituitary Tissue in Patients with Pituitary Adenomas. Acad Radiol. 2019;26(9):1222-8. Https://doi.org/ 10.1016/j.acra.2018.09.015

Boertien TM, Booij J, Majoie CBLM, Drent ML, Pereira AM, Biermasz NR, et al. 68Ga-DOTATATE PET imaging in clinically non-functioning pituitary macroadenomas. Eur J Hybrid Imaging. 2020;4(1). Https://doi.org/ 10.1186/s41824-020-0073-3

Silverstein JM. Need for improved monitoring in patients with acromegaly. Endocr Connect. 2015;4(4):R59-67. Https://doi.org/ 10.1530/EC-15-0064

Theodoropoulou M, Stalla GK. Somatostatin receptors: From signaling to clinical practice. Front Neuroendocrinol. 2013;34(3):228-52. Https://doi.org/ 10.1016/j.yfrne.2013.07.005

Balon HR, Brown TLY, Goldsmith SJ, Silberstein EB, Krenning EP, Lang O, et al. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol. 2011;39(4):317-24. Https://doi.org/ 10.2967/jnmt.111.098277

Kwekkeboom DJ, De Herder WW, Krenning EP. Receptor imaging in the diagnosis and treatment of pituitary tumors. J Endocrinol Invest. 1999;22(1):80-8. Https://doi.org/ 10.1007/BF03345484

Plökinger U, Bäder M, Hopfenmüller W, Saeger W, Quabbe HJ. Results of somatostatin receptor scintigraphy do not predict pituitary tumor volume- and hormone-response to octreotide therapy and do not correlate with tumor histology. Eur J Endocrinol. 1997;136(4):369-76. Https://doi.org/ 10.1530/eje.0.1360369

Borson-Chazot F, Houzard C, Ajzenberg C, Nocaudie M, Duet M, Mundler O, et al. Somatostatin receptor imaging in somatotroph and non-functioning pituitary adenomas: Correlation with hormonal and visual responses to octreotide. Clin Endocrinol (Oxf). 1997;47(5):589-98. Https://doi.org/ 10.1046/j.1365-2265.1997.3361119.x

Legovini P, De Menis E, Billeci D, Conti B, Zoli P, Conte N. 111Indium-pentetreotide pituitary scintigraphy and hormonal responses to octreotide in acromegalic patients. J Endocrinol Invest. 1997;20(7):423-7.

Zhao X, Xiao J, Xing B, Wang R, Zhu Z, Li F. Comparison of 68Ga DOTATATE to 18F-FDG Uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy. Clin Nucl Med. 2014;39(7):605-8. Https://doi.org/ 10.1097/RLU.0000000000000457

Skoura E, Datseris IE, Xekouki P, Tolis G, Stratakis CA. SPECT and 18F-FDG PET/CT imaging of multiple paragangliomas and a growth hormone-producing pituitary adenoma as phenotypes from a novel succinate dehydrogenase subunit D mutation. Clin Nucl Med. 2014;39(1):81-3. Https://doi.org/ 10.1210/jc.2011-1179

Janssen I, Blanchet EM, Adams K, Chen CC, Millo CM, Herscovitch P, et al. Superiorityof[68Ga]-DOTATATEPET/CTtoOther functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2015;21(17):3888-95. Https://doi.org/ 10.1158/1078-0432.CCR-14-2751

Sharma P, Mukherjee A, Karunanithi S, Naswa N, Kumar R, Ammini AC, et al. Accuracy of 68Ga DOTANOC PET/CT imaging in patients with multiple endocrine neoplasia syndromes. Clin Nucl Med. 2015;40(7):e351-6.

Hofman MS, Hicks RJ. Moving beyond “Lumpology”: PET/CT imaging of pheochromocytoma and paraganglioma. Clin Cancer Res. 2015;21(17):3815-7. Https://doi.org/ 10.1158/1078-0432.CCR-15-1073.

Bi WL, Laws ER. Metabolic imaging in the detection of growth hormone-secreting pituitary adenomas. World Neurosurg. 2014;82(3):329-30.

Rodriguez-Barcelo S, Gutierrez-Cardo A, Dominguez-Paez M, Medina-Imbroda J, Romero-Moreno L, Arraez-Sanchez M. Clinical usefulness of coregistered 11C-methionine positron emission tomography/3-T magnetic resonance imaging at the follow-up of acromegaly. World Neurosurg. 2014;82(3):468-73. Https://doi.org/ 10.1016/j.wneu.2014.03.014

Feng Z, He D, Mao Z, Wang Z, Zhu Y, Zhang X, et al. Utility of 11C-methionine and 18F-FDG PET/CT in patients with functioning pituitary adenomas. Clin Nucl Med. 2016;41(3):e130-4. Https://doi.org/ 10.1097/RLU.0000000000001085

Giustina A, Mazziotti G, Giubbini R. Molecular imaging in acromegaly: Should clinicians look carefully at developments in the field? Nucl Med Commun. 2014;35(9):897-9. Https://doi.org/ 10.1016/j.ghir.2016.10.001

Van Den Bergh ACM, Pruim J, Links TP, Van Der Vliet AM, Sluiter W, Wolffenbuttel BHR, et al. Tyrosine positron emission tomography and protein synthesis rate in pituitary adenoma: Different effects of surgery and radiation therapy. Radiother Oncol. 2011;98(2):213-6. Https://doi.org/ 10.1016/j.radonc.2010.12.020. Epub 2011 Feb 4

Ju H, Pan Y, Lv J, Mao X, Zhang Y. Pituitary involvement of langerhans cell histiocytosis in an adult unveiled by FDG PET/CT. Clin Nucl Med. 2015;40(6):509-11. Https://doi.org/ 10.1097/RLU.0000000000000654

Koo PJ, Klingensmith WC, Lewis KD, Bagrosky BM, Gonzalez R. Anti-CTLA4 antibody therapy related complications on FDG PET/CT. Clin Nucl Med. 2014;39(1):93-6. Https://doi.org/ 10.1097/RLU.0b013e318292a775

Ikeda H, Abe T, Watanabe K. Usefulness of composite methionine-positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J Neurosurg. 2010;112(4):750-5. Https://doi.org/ 10.3171/2009.7.JNS09285

Melmed S, Colao A, Barkan A, Molitch M, Grossman AB, Kleinberg D, et al. Guidelines for Acromegaly Management: An Update. J Clin Endocrinol Metab. 2009 May;94(5):1509-17. Https://doi.org/ 10.1210/jc.2008-2421. Epub 2009 Feb 10

Agustsson TT, Baldvinsdottir T, Jonasson JG, Olafsdottir E, Steinthorsdottir V, Sigurdsson G, et al. The epidemiology of pituitary adenomas in Iceland, 1955-2012: A nationwide population-based study. Eur J Endocrinol. 2015 Nov;173(5):655-64. Https://doi.org/ 10.1530/EJE-15-0189

Epidémiologie des adénomes hypophysaires : étude dans une agglomération urbaine de suisse - Revue Médicale, 2009.

Karavitaki N, Thanabalasingham G, Shore HCA, Trifanescu R, Ansorge O, Meston N, et al. Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma. Clin Endocrinol (Oxf). 2006 Oct;65(4):524-9. Https://doi.org/10.1111/j.1365-2265.2006.02627.x

Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol (Oxf). 2006 Aug;65(2):265-73. Https://doi.org/ 10.1111/j.1365-2265.2006.02562.x

Tang BNT, Levivier M, Heureux M, Wikler D, Massager N, Devriendt D, et al. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur J Nucl Med Mol Imaging. 2006 Feb;33(2):169-78.

Bergstrom M, Muhr C, Lundberg PO, Bergström K, Gee AD, Fasth KJ, et al. Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: A PET study. J Comput Assist Tomogr. 1987;11(5):815-9. Https://doi.org/ 10.1007/s00259-005-1882-0.

Muhr C, Bergström M. Positron emission tomography applied in the study of pituitary adenomas. Vol. 14, Journal of Endocrinological Investigation. J Endocrinol Invest; 1991. p. 509-28. Https://doi.org/10.1007/BF03346855

Muhr C, Bergstrom M, Lundberg PO, Hartman M, Bergstrom K, Pellettieri L, et al. Malignant prolactinoma with multiple intracranial metastases studied with positron emission tomography. Neurosurgery. 1988;22(2):374-9. Https://doi.org/10.1227/00006123-198802000-00017

Findling JW, Raff H. Clinical Review: Cushing’s syndrome: Important issues in diagnosis and management. Vol. 91, Journal of Clinical Endocrinology and Metabolism. Endocrine Society; 2006. p. 3746-53. Https://doi.org/10.1210/jc.2006-0997

Heimburger C, Bund C, Addeo P, Goichot B, Imperiale A. 18F-FDOPA uptake reflects the efficacy of dopamine agonists treatment in pituitary prolactinoma. Clin Nucl Med. 2018 Sep;43(9):e324-5. Https://doi.org/ 10.1097/RLU.0000000000002202

Koga M, Nakao H, Arao M, Sato B, Noma K, Morimoto Y, et al. Demonstration of specific dopamine receptors on human pituitary adenomas. Acta Endocrinol (Copenh). 1987;114(4):595-602. Https://doi.org/ 10.1530/acta.0.1140595

Pivonello R, Matrone C, Filippella M, Cavallo LM, Di Somma C, Cappabianca P, et al. Dopamine receptor expression and function in clinically nonfunctioning pituitary tumors: Comparison with the effectiveness of cabergoline treatment. J Clin Endocrinol Metab. 2004 Apr;89(4):1674-83. Https://doi.org/ 10.1210/jc.2003-030859

De Herder WW, Reijs AEM, Feelders RA, Van Aken MO, Krenning EP, Van Der Lely AJ, et al. Diagnostic imaging of dopamine receptors in pituitary adenomas. In: European Journal of Endocrinology, Supplement. Eur J Endocrinol; 2007. Https://doi.org/ 10.1530/EJE-11-0726

Ferone D, Pivonello R, Lastoria S, Faggiano A, Del Basso De Caro ML, Cappabianca P, et al. In vivo and in vitro effects of octreotide, quinagolide and cabergoline in four hyperprolactinaemic acromegalics: Correlation with somatostatin and dopamine D2 receptor scintigraphy. Clin Endocrinol (Oxf). 2001;54(4):469-77. Https://doi.org/10.1046/j.1365-2265.2001.01080.x

Panza N, Rambaldi PF, Battista C, Ambrosio G, Cascini GL, Schillirò F, et al. Receptor imaging with 111In-pentreotide and 123I-methoxybenzamide, and inhibition tests with octreotide and bromocriptine of mixed growth hormone/prolactin-secreting pituitary tumors. Biomed Pharmacother. 1999;53(7):319-22. Https://doi.org/ 10.1016/s0753-3322(00)88504-2

De Herder WW, Reijs AEM, De Swart J, Kaandorp Y, Lamberts SWJ, Krenning EP, et al. Comparison of iodine-123 epidepride and iodine-123 IBZM for dopamine D, receptor imaging in clinically non-functioning pituitary macroadenomas and macroprolactinomas. Eur J Nucl Med. 1999;26(1):46-50. Https://doi.org/ 10.1007/s002590050358

de Herder WW, Reijs AEM, Feelders RA, van Aken MO, Krenning EP, Tanghe HLJ, et al. Dopamine agonist therapy of clinically non-functioning pituitary macroadenomas. Is there a role for 123I-epidepride dopamine D2 receptor imaging? Eur J Endocrinol. 2006 Nov;155(5):717-23. Https://doi.org/ 10.1530/eje.1.02281

Muhr C, Bergström M, Lundberg PO, Bergström K, Hartvig P, Lundqvist H, et al. Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone. J Comput Assist Tomogr. 1986;10(2):175-80. Https://doi.org/ 10.1097/00004728-198603000-00001

Bergström M, Muhr C, Lundberg PO, Långström B. PET as a Tool in the Clinical Evaluation of Pituitary Adenomas. J Nucl Med. 1991;32(4).

Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, et al. The prevalence of pituitary adenomas: A systematic review. Vol. 101, Cancer. Cancer; 2004. p. 613-9. Https://doi.org/ 10.1002/cncr.20412

Koulouri O, Steuwe A, Gillett D, Hoole AC, Powlson AS, Donnelly NA, et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome. In: European Journal of Endocrinology. BioScientifica Ltd.; 2015. p. M107-20. Https://doi.org/ 10.1530/EJE-15-0616

Xu H, Zhang M, Zhai G, Zhang M, Ning G, Li B. The role of integrated 18F-FDG PET/CT in identification of ectopic ACTH secretion tumors. Endocrine. 2009 Dec;36(3):385-91. Https://doi.org/ 10.1007/s12020-009-9247-2

Amlashi FG, Tritos NA. Thyrotropin-secreting pituitary adenomas: epidemiology, diagnosis, and management. Vol. 52, Endocrine. Humana Press Inc.; 2016. p. 427-40. Https://doi.org/ 10.1007/s12020-016-0863-3

Socin HV, Chanson P, Delemer B, Tabarin A, Rohmer V, Mockel J, et al. The changing spectrum of TSH-secreting pituitary adenomas: Diagnosis and management in 43 patients. Eur J Endocrinol. 2003 Apr;148(4):433-42. Https://doi.org/ 10.1530/eje.0.1480433

Losa M, Magnani P, Mortini P, Persani L, Acerno S, Giugni E, et al. Indium-111 pentetreotide single-photon emission tomography in patients with TSH-secreting pituitary adenomas: Correlation with the effect of a single administration of octreotide on serum TSH levels. Eur J Nucl Med. 1997;24(7):728-31. Https://doi.org/ 10.1007/BF00879659

Verhoeff NPLG, Bemelman FJ, Wiersinga WM, van Royen EA. Imaging of dopamine D2 and somatostatin receptors in vivo using single-photon emission tomography in a patient with a TSH/PRL-producing pituitary macroadenoma. Eur J Nucl Med. 1993 Jun;20(6):555-61. Https://doi.org/ 10.1007/BF00175168

Kim S, Dillon WP, Hope TA, El-Sayed IH, van Zante A, Wu K, et al. Ectopic Thyroid-Stimulating Hormone-Secreting Pituitary Adenoma of the Nasopharynx Diagnosed by Gallium 68 DOTATATE Positron Emission Tomography/Computed Tomography. World Neurosurg. 2019 May;125:400-4. Https://doi.org/ 10.1016/j.wneu.2019.02.022

Descargas

Publicado

2021-07-09

Número

Sección

Artículos de revisión

Cómo citar

Cardenas , R. A., Patiño Arboleda, M., Buitrago Gómez, N., Salamanca Mora, D. ., Kuratomi Nakamura, K. ., & Abreu Lomba, A. . (2021). Medicina nuclear y su aplicación en la neuroendocrinología: revisión de la literatura. Revista Colombiana Salud Libre, 15(1), e427615. https://doi.org/10.18041/1900-7841/rcslibre.2020v15n1.7615

Artículos más leídos del mismo autor/a