New simple and generalized model to estimate the vapor pressure of light hydrocarbons

Authors

  • Luis Fernando Cardona Palacio

DOI:

https://doi.org/10.18041/1909-2458/ingeniare.20.409

Abstract

A new equation for light hydrocarbon is proposed for the estimation of vapor pressure, applicable in wide temperature range. Was used equilibrium liquid-vapor data with 19 low molecular weight hydrocarbons and using Lasdon et al., algorithm which minimize the sum of the squares of the relative deviation in liquid-vapour pressure were determined the parameters and constants characteristics of the new equation and generalized for any pure substance using the acentric factor. To validate the new model, vapour pressure predictions were made for 54 pure substances between alco-hols, hydrocarbons, refrigerants, noble gases and inorganic substances, generated percent relative average deviation of 1.504%. The results were compared with other equations and the comparison indicates that the proposed method provide more accurate results than other methods used in this work.

Downloads

References

H. An and W. Yang, “A new generalized correlation for accurate vapor pressure prediction,” Chem Phys Lett, vol. 543, pp. 188-192, Ago. 2012.

A. Mohebbi, M. Taheri, and A. Soltani, “A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants,” Int J Refrig, vol. 31, n° 8, pp. 1317-1327, Dic. 2008.

E. Sanjari, “A new simple method for accurate calculation of saturated vapor pressure,” Thermo-chim Acta, vol. 560, pp. 12-16, May. 2013.

K. Mejbri and A. Bellagi, “Corresponding states correlation for the saturated vapor pressure of pure fluids,” Thermochim Acta, vol. 436, n° 1–2, pp. 140-149, Oct. 2005.

E. D. Rogdakis and P. A. Lolos, “Simple generalized vapour pressure- and boiling point correlation for refrigerants,” Int J Refrig, vol. 29, n° 4, pp. 632-644, Jun. 2006.

L. A. Forero G. and J. A. Velásquez J., “Wagner liquid–vapour pressure equation constants from a simple methodology,” J Chem Thermodyn, vol. 43, n° 8, pp. 1235-1251, Ago. 2011.

E. Sanjari, M. Honarmand, H. Badihi, and A. Ghaheri, “An accurate generalized model for predict vapor pressure of refrigerants,” Int J Refrig, vol. 36, n° 4, pp. 1327-1332, Jun. 2013.

L.S. Lasdon, A.D. Waren, A. Jain and M. Ratner, “Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming”, ACM Trans. Math. Softw, pp. 1-45, 1976.

R.C. Reid, J.M. Prausnitz and B.E. Poling, The Properties of Gases and Liquids. Nueva York, Estados Unidos de Norteamérica: McGraw-Hill, pp. 205-735, 1987.

L. Riedel, Kritischer Koeffizient, “Dichte des gesättigten dampfes und verdampfungswärme. unter-suchungen über eine erweiterung des theorems der übereinstimmenden zustände,” Teil III, Chem. Ing. Tech, 26, pp. 679-683, 1954.

NIST Chemistry WebBook (2016). National Institute of Standards and Technology [en línea]. Dis-ponible en: http://webbook.nist.gov.

Downloads

Published

2016-12-01

Issue

Section

Artículos

How to Cite

1.
Cardona Palacio LF. New simple and generalized model to estimate the vapor pressure of light hydrocarbons. ingeniare [Internet]. 2016 Dec. 1 [cited 2025 Apr. 7];(20):63-74. Available from: https://revistas.unilibre.edu.co/index.php/ingeniare/article/view/409