Inteligencia humana para autores, revisores y editores que utilicen inteligencia artificial

Autores/as

DOI:

https://doi.org/10.18041/2665-427X/ijeph.1.11268

Palabras clave:

IA, Inteligencia artificial, autores articuos cientificos, editores, revisores

Resumen

Le llamamos inteligencia artificial a cualquier máquina que procese información con algún propósito, cumpliendo las reglas lógicas de la computación de Turing descritas hace más de 70 años. Estas máquinas funcionan con instrucciones llamadas algoritmos, que son una secuencia finita y bien definida de procesamiento de información que se implementan mediante autómatas (computadoras) o cualquier tecnología digital con el propósito de optimizar un proceso. Esto quiere decir que el fin de la inteligencia artificial es la optimización.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Danziger S. Intelligence as a social concept: a socio-technological interpretation of the turing test. Philos Technol. 2022; 35(3): 1-26. Doi: 10.1007/s13347-022-00561-z

Astobiza AM. Ética algorítmica: Implicaciones éticas de una sociedad cada vez más gobernada por algoritmos. Dilemata. 2017; (24): 185-217.

Hanna R, Kazim E. Philosophical foundations for digital ethics and AI Ethics: a dignitarian approach. AI Ethics. 2021; 1(4): 405-23. Doi: 10.1007/s43681-021-00040-9

Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat Commun. 2020; 11(1): 233.

Doi: 10.1038/s41467-019-14108-y

Özdemir V. Not all intelligence is artificial: data science, automation, and AI meet HI. OMICS. 2019; 23(2): 67-9. Doi: 10.1089/omi.2019.0003

WHO. Ethics and governance of artificial intelligence for health: WHO guidance. Geneve: World Health Organization; 2021. Cited 2023 Nov 14. Available from: http://apps.who.int/bookorders

Herbold S, Hautli-Janisz A, Heuer U, Kikteva Z, Trautsch A. A large-scale comparison of human-written versus ChatGPT-generated essays. Sci Rep. 2023; 13(1): 18617. Doi: 10.1038/s41598-023-45644-9

Kar P. Technology and the NHS-a world of false promises? BMJ. 2019; 367: l6135. Doi: 10.1136/bmj.l6135

Zielinski C, Winker M, Aggarwal R, Ferris LE, Heinermann M, Lapeña JF, et al. Chatbots, generative AI, and scholarly manuscripts. WAME. Cited 2023 Nov 17. Available from: https://wame.org/page3.php?id=106

Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging. 2020; 13(9): 2017. Doi: 10.1016/j.jcmg.2020.07.015

Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020; 26(9): 1320. Doi: 10.1038/s41591-020-1041-y

Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J Dent. 2021;107: 103610. Doi: 10.1016/j.jdent.2021.103610 PMid:33631303

Cruz RS, Liu X, Chan AW, Denniston AK, Calvert MJ, Darzi A, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020; 26(9): 1351-63. Doi: 10.1136/bmj.m3210 PMid:32907797

Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ. 2020; 370: m3164. Doi: 10.1136/bmj.m3164

Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH. MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc. 2020; 27(12): 2011. Doi: 10.1093/jamia/ocaa088 PMid:32594179

Olczak J, Pavlopoulos J, Prijs J, Ijpma FFA, Doornberg JN, Lundström C, et al. Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal. Acta Orthop. 2021; 92(5): 513. Doi: 10.1080/17453674.2021.1918389

Kocak B, Baessler B, Bakas S, Cuocolo R, Fedorov A, Maier-Hein L, et al. CheckList for evaluation of radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging. 2023; 14(1): 20. Doi: 10.1186/s13244-023-01415-8

Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP. Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes. 2020; 13(10): e006556. Doi: 10.1161/CIRCOUTCOMES.120.006556

Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): A guide for authors and reviewers. Radiol Artif Intell. 2020; 2(2): e200029. Doi: 10.1148/ryai.2020200029

Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ. 2022; 377: e070904. Doi: 10.1136/bmj-2022-070904

Kwong JCC, McLoughlin LC, Haider M, Goldenberg MG, Erdman L, Rickard M, et al. Standardized reporting of machine learning applications in urology: The STREAM-URO framework. Eur Urol Focus. 2021; 7(4): 672-82. Doi: 10.1016/j.euf.2021.07.004.

Publicado

2024-03-19

Número

Sección

Editorial

Cómo citar

Palacios Gomez, M. (2024). Inteligencia humana para autores, revisores y editores que utilicen inteligencia artificial. Interdisciplinary Journal of Epidemiology and Public Health, 7(1), e-11268. https://doi.org/10.18041/2665-427X/ijeph.1.11268

Artículos similares

1-10 de 112

También puede Iniciar una búsqueda de similitud avanzada para este artículo.