Particulate Matter Prediction Model (PM2.5) in Bogota city

Authors

DOI:

https://doi.org/10.18041/1794-4953/avances.2.8574

Keywords:

air pollution, linear regression, machine learning, particulate matter, time series

Abstract

Air pollution has been widely studied due to the great threat it poses to both the environment and human health. Mainly, the big cities have been affected by the problem of air pollution due to various factors, such as industrialization and overpopulation. The latter have a direct implication in the atmosphere by increasing greenhouse gas emissions and smog, which contributes to the depletion of the ozone layer. Air pollution brings serious implications for human health, directly affecting the respiratory system and generating consequences such as throat irritation, worsening conditions such as asthma, bronchitis and even permanent lung damage. However, considering the great importance of detecting polluting agents, such as particulate matter (PM), it is possible to propose alternatives to predict their appearance in a certain location. In this study, we propose the use of computational tools and multiple linear regression to predict the behavior of PM2.5 particulate matter from the Kennedy locality, Bogotá. This prediction was made with the implementation of an algorithm, which is based on historical data of particulate matter suspended in the air, Ozone, NO, CO, wind direction and speed during the year 2018. The analyzes carried out were compared with real data, with the purpose of determining the veracity of the predictions made by the algorithm. The results revealed the level of PM2.5 is a consequence of CO emissions, which is related to vehicle traffic, since they are the largest producers of this gas. In addition, the prediction of PM2.5 values ​​showed a mean error of 5.6 PM2.5, which means that the model achieves an accurate prediction of air quality. Considering these results, this study represents a promising alternative for the prediction of particulate matter, in such a way that action routes can be established to mitigate the damage caused by these pollutants in the environment.

Downloads

Download data is not yet available.

References

Apte, J., Marshall, J., Cohen, A., and Brauer, M. “Addressing Global Mortality from Ambient PM 2.5”. Environ. Sci. Technol. 2015, 49, 13, 8057–8066, June 16, 2015. DOI: https://doi.org/10.1021/acs.est.5b01236

Weagle, C., Snider, G., Li, C., Donkelaar, A., Philip, S., Bissonnette, P., Burke, J., Jackson, J., Latimer, R., Stone, E., Abboud, I., Akoshile, C., Anh, N., Brook, J., Cohen, A., Dong, J., Gibson, M., Griffith, D., He, K., and Martin, R. “Global Sources of Fine Particulate Matter: Interpretation of PM 2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model”. Environ. Sci. Technol. Vol. 52, 20, 11670–11681 (2018). DOI: 10.1021/acs.est.8b01658.

Atkinson, R., Butland, B., Dimitroulopoulou, C., Heal, M., Stedman, J., Carslaw, N., & Jarvis, D., Heaviside, C., Vardoulakis, S., Walton, H. and Anderson, H. “Long-term exposure to ambient ozone and mortality: A quantitative systematic review and meta-analysis of evidence from cohort studies”. BMJ Open. 6. e009493. DOI: 10.1136/bmjopen-2015-009493.

Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., and Mickley, L. J. “Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem”. Environ. Res., vol. 195, no. 110754. (2021). DOI: https://doi.org/10.1016/j.envres.2021.110754

Li, X., Jin, L., and H. Kan, “Air pollution: a global problem needs local fixes”. Nature., 570, 437-439 (2019). DOI: https://doi.org/10.1038/d41586-019-01960-7

Secretaria distrital de Ambiente. Calidad del aire en Bogotá, Alcaldía de Bogotá, Bogotá, 2018. Disponible en: https://www.ambientebogota.gov.co/calidad-del-aire.

Red de Monitoreo de Calidad del Aire de Bogotá – RMCAB, Estaciones RMCAB, Alcaldia de Bogota (2019). Disponible en: http://rmcab.ambientebogota.gov.co/home/map.

Mann, J. K., Lutzker, L., Holm, S. M., Margolis, H. G., Neophytou, A. M., Eisen, E. A., Costello, S., Tyner, T., Holland, N., Tindula, G., Prunicki, M., Nadeau, K., Noth, E. M., Lurmann, F., Hammond, S. K., and Balmes, J. R. “Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children”. Environ Res. 2021;195:110870. DOI: 10.1016/j.envres.2021.110870.

Ministerio de Ambiente y Desarrollo Sostenible de Colombia. “Resolución 2254 del 01 de noviembre de 2017” (2017). Disponible en: https://www.icbf.gov.co/cargues/avance/docs/resolucion_minambienteds_2254_2017.htm

Alvin C. and Bruce G. “Linear Models In Statistics” 2nd Edition, New Jersey. John Wiley & Sons (2007).

Darlington, R. and Hayes, A. “Regression Analysis and Linear Models: Concepts, Applications, and Implementation”, New York, The Guilford Press (2017).

Montero, R. “Modelos de regresión lineal múltiple”, Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España. Disponible en: https://www.ugr.es/~montero/matematicas/regresion_lineal.pdf.

Datos Abiertos, "https://www.datos.gov.co/," Medición de la calidad del aire en Bogotá, 2018. [Online]. Available: https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Medici-n-de-la-calidad-del-aire-en-Bogot-. [Accessed 2019].

Forsyth F. and Ponce J. “Computer Vision: A Modern Approach” 2nd Edition, New Jersey. Pearson (2012).

Bertsekas, D. “Nonlinear Programming” 2nd Edition. Belmont. Athena Scientific (1999).

Jin, L., XIE, J., Wong, C., Chan, S., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., Li, J., Zhang, G., Fu, P., and Li, X. “Contributions of City-Specific Fine Particulate Matter (PM2.5) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China”. Environ. Sci. Technol. vol. 53, issue 5, pp. 2881-289 (2019). DOI: 10.1021/acs.est.9b00449.

Shaddick, G., Thomas, M., Jobling, A., Brauer, M., Donkelaar, A., Burnett, R., Chang, H., Cohen, A., Van Dingenen, R., Dora, C., Gumy, S., Liu, Y., Martin, R., Waller, L., West, J., Zidek, J., and Prüss-Ustün, A. “Data Integration Model for Air Quality: A Hierarchical Approach to the Global Estimation of Exposures to Ambient Air Pollution”. J R Stat Soc Series B Stat Methodol vol. 67(1), pages 231-253, (2016). DOI: 10.1111/rssc.12227.

Downloads

Published

2022-12-20

How to Cite

Particulate Matter Prediction Model (PM2.5) in Bogota city. (2022). Avances: Investigación En Ingeniería, 19(2 (Julio-Diciembre). https://doi.org/10.18041/1794-4953/avances.2.8574