Evaluation of the Transport Capacity of Flows and Sediments of the Transversal Drainage in a Mountainous Road in the Ecuadorian Andes

Authors

  • Edison Briceño-Briceño Universidad Técnica Particular de Loja
  • Fernando Oñate-Valdivieso Universidad Técnica Particular de Loja
  • Arianna Oñate-Paladines Universitat Politècnica de Catalunya

DOI:

https://doi.org/10.18041/1794-4953/avances.2.6628

Keywords:

Andes, culverts, evaluation, road drainage, sediments

Abstract

Drainage is essential to ensure the useful life of roads. Not only water circulates through the sewers, but also sediment that is carried by the flow, either as bottom drag or in suspension. Therefore, the sustainable design of culverts must allow the sediment transport associated with natural river systems. In the present work, 6 culverts located on a mountain road in the Andes of southern Ecuador were studied. The hydraulic capacity of each culvert was evaluated evacuating a peak flow with a 25-year return period using specialized software. Additionally, the criterion of the beginning of the movement of the sediments was applied to analyze the self-cleaning capacity of the culverts. After the evaluation, it was found that only three of the culverts studied had sufficient capacity to transport the evaluated flow and that all culverts had the necessary conditions to avoid the deposition of sediment.

Downloads

Download data is not yet available.

References

P. A. Creamer, “Culvert hydraulics: basic principle”, Professional Development Series CONTECH Bridge Solutions Inc., Ohio, 2007.

K. J. Rowley, R. Hotchkis, “Sediment transport conditions near culverts”, en World Environmental and Water Resources Congress, Portland, Oregon, Estados Unidos, 1-4 de junio de 2014. https://doi.org/10.1061/9780784413548.141

B. J. Rowley, E. A. Thiele, R. Hotchkiss, E. J. Nelson, “Numerical modeling of culvert hydraulics: modernization of existing HY8 software”, en World Environmental and Water Resources Congress, Omaha, Nebraska, Estados Unidos, 21 al 25 de mayo de 2006. https://doi.org/10.1061/40856(200)51

N. Taha, M. M. El-Feky, A. Abdelhameed El-Saiad e I. Fathy, “Numerical investigation of scour characteristics downstream of blocked culverts”, Alex. Eng. J., vol. 59, n.º 5, pp. 3503-3513, 2020, https://doi.org/10.1016/j.aej.2020.05.032

A. M. Truhlar, R. Marjerison, D. F. Gold y W. M. Todd, “Rapid remote assessment of culvert flooding risk”, J. Sustain. Water Built Environ., vol. 6, n.º 2, p. 06020001, 2020, https://doi.org/10.1061/JSWBAY.0000900

S. Rodrigues, N. Claude, F. Moatar, “Sediment transport”. En Encyclopedia of environmetrics, 2.ª ed. Filadelfia: John Wiley and Sons, 2011. https://doi.org/10.1002/9780470057339.vas010.pub2

R. T. Kilgore, J. L. Morris, J. D. Schall, P. L. Thompson y S. M. Zerges, Hydraulic Design of Highway Culverts, 3.ª ed. Washington, D.C.: Federal Highway Administration (FHWA), 2012.

C. Correa, “Análisis de la susceptibilidad a procesos de remoción en masa en estructuras lineales mediante la utilización de sistemas de información geográfica” M. S. tesis, Universidad San Francisco de Quito, Ecuador, 2013 [en línea]. Disponible: http://repositorio.usfq.edu.ec/handle/23000/2821

F. Oñate-Valdivieso, V. Uchiari y A. Oñate-Paladines, “Large-scale climate variability patterns and drought: a case of study in South – America”. Water Resour. Manag., n.º 34, pp. 2061–2079, 2020, https://doi.org/10.1007/s11269-020-02549-w

J. J. Vélez Upegui y A. Botero Gutiérrez, “Estimación del tiempo de concentración y tiempo de rezago en la cuenca experimental urbana de la quebrada San Luis, Manizales”, DYNA, vol. 78, n.º 165, pp. 58-71, 2011 [en línea]. Disponible: http://www.bdigital.unal.edu.co/27751/2/25640-159419-1-PB.htm

Invías,”Drenaje superficial” In Manual de drenaje para carreteras. Instituto Nacional de Vías. Bogotá, Colombia, 2009, ch. 4, sec. 4.6, pp. 4-75 – 4-80.

Ministerio de Transporte Y Obras Públicas (MTOP), “Norma ecuatoriana vial NEVI - 12”, , Quito, Ecuador, 2013.

Natural Resources Conservation Service (NRCS), “Chapter 16: Hydrographs. Part 630 Hydrology, National Engineering Handbook”, United states Department of Agriculture Natural Resources Conservation Service, 2007.

V. M. Ponce, Engineering Hydrology, Principles and Practices. San Diego: San Diego State University, California, 2014 [en línea]. Disponible: http://ponce.sdsu.edu/enghydro/index.html

V. T. Chow, D. Maidment y L. Mays, Hidrología aplicada. Bogotá: McGraw-Hill, 1994.

Instituto Nacional de Meteorología e Hidrología (INAMHI), Determinación de ecuaciones para el cálculo de intensidades máximas de precipitación. Quito, Ecuador, 2019 [en línea]. Disponible: http://www.serviciometeorologico.gob.ec/Publicaciones/Hidrologia/ESTUDIO_DE_INTENSIDADES_V_FINAL.pdf

F. J. Aparicio Mijares, Fundamentos de hidrología de superficie. Ciudad de México: Limusa, 2009.

S. M. Bascuñán Chaparro, “Relación entre la erosión producida por un flujo superficial en suelos finos y algunas propiedades de estos”, tesis de pregrado, Departamento de Ingeniería Civil, Universidad de Chile, 2010 [en línea]. Disponible: http://repositorio.uchile.cl/handle/2250/103881

Federal Highway Administration (FHWA), HY-8 User Manual. Washington, D.C., 2019.

J. A. Maza y M. García. “Transporte de sedimentos”. En Manual de ingeniería de ríos. Ciudad de México: Universidad Nacional Autónoma de México-Instituto de Ingeniería, 1996.

M. M. Saldaña Díaz, A. Nemmaoui, Y. Cantón Castilla, M. A. Aguilar Torres y F. J. Aguilar Torrres, “Estimación de la erosión potencial en la cuenca del río Moulouya aguas arriba de la presa Mohamed V”, Mapping, n.º 168, pp. 4–16, 2014.

Published

2020-12-01

How to Cite

Evaluation of the Transport Capacity of Flows and Sediments of the Transversal Drainage in a Mountainous Road in the Ecuadorian Andes. (2020). Avances: Investigación En Ingeniería, 18(1 (Enero-Junio). https://doi.org/10.18041/1794-4953/avances.2.6628