Mechanical Behavior of Coir Fiber and Nonwovens. Comparison between Needle Punching and Chemical Bonding Parameters

Authors

  • Tomas Simon Gomez Universidad Pontificia Bolivariana Grupo de investigacion sobre nuevos materiales
  • Santiago Zuluaga Palacio Universidad Pontificia Bolivariana
  • Maria Camila Salazár Marín Universidad Pontificia Bolivariana
  • Andrés Felipe Peñuela Universidad Pontificia Bolivariana
  • Patricia Fernández Morales Universidad Pontificia Bolivariana

DOI:

https://doi.org/10.18041/1794-4953/avances.1.5255

Keywords:

coir, nonwovens, chemical bonding, needle punching, tensile test.

Abstract

In Colombia, coconut shell wastes represent an environmental burden equivalent to approximately 38,890 tons of waste per year. The use of materials made with the fiber of the shell is proposed, seeking to reduce the impact of the coconut industry.  In this study, nonwovens were developed from coconut fibers by different methods to analyze their impact on breaking force and deformation. Thus, needle-punching and chemical bonding were evaluated regarding two different levels of percentage of adhesive and punching frequencies. Additionally, fiber diameter was measured, the fiber components were obtained, and the tensile tests allowed to acquire the mechanical strength of the fibers and nonwoven materials. Coconut fibers were found to have an average elastic modulus of 1.83 GPA, due to their large diameter (0.3 mm) and low cellulose content (46.5 %). Also, it was shown that the implemented bonding method had a great effect on the mechanical properties of the nonwovens, in which the maximum breaking strength value was 212.34 N by the chemical adhesion method. The widespread use of this kind of material could reduce the waste generated by the coir industry.

 

Downloads

Download data is not yet available.

References

Food and Agriculture Organization (FAO), Future Fibres: Coir. Coir. n.º 1, 2019.

Ministerio de Agricultura y Desarrollo Rural, “Área, producción y rendimiento nacional por cultivo”. Agronet MinAgricultura, 2018.

C. A. Forero Núñez, A. Cediel Ulloa, J. L. Rivera Gil, A. Suaza Montalvo y F. E. Sierra Vargas, “Estudio preliminar del potencial energético de cuesco de palma y cáscara de coco en Colombia”, Ingeniería Solidaria, vol. 8, n.º 14, pp. 19-25, 2012.

P. Naldony, T. H. Flores-Sahagún, y K. G. Satyanarayana, "Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene", Journal of Composite Materials, vol. 50, n.º 1, pp. 45-56, 2016.

C. M. Lin, C. W. Lou y J. H. Lin, "Manufacturing and properties of fire-retardant and thermal insulation nonwoven fabrics with FR-polyester hollow fibers", Textile Research Journal, vol. 79, n.º 11, pp. 993-1000, 2009.

S. Maity, "Jute needlepunched nonwovens: Manufacturing, properties, and applications", Journal of Natural Fibers, vol. 13, n.º 4, pp. 383-396, 2016.

L. Ghali, M. T. Halimi, M. Hassen y F. Sakli, "Effect of blending ratio of fibers on the properties of nonwoven fabrics based of alfa fibers", Advances in Materials Physics and Chemistry, vol. 4, n.º 6, pp. 116-125, 2014.

ASTM D1577-07, 2018 Standard Test Methods for Linear Density of Textile Fibers. West Conshohocken, PA: ASTM International, 2018.

N. A. Hotaling, K. Bharti, H. Kriel y C. G. Simon, "DiameterJ: A validated open source nanofiber diameter measurement tool", Biomaterials, n.º 61, pp. 327-338, 2015.

ASTM D1106-96(2013), Standard Test Method for Acid-Insoluble Lignin in Wood. West Conshohocken, PA: ASTM International, 2013.

ASTM D3822/D3822M-14(2020), Standard Test Method for Tensile Properties of Single Textile Fibers. West Conshohocken, PA: ASTM International, 2020.

ASTM D5035 - 11(2019), Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method). West Conshohocken, PA: ASTM International, 2019.

D. S. K. Pathirana, "Investigation of Tensile Properties and Durability of Coir Fibres / Geotextiles", University of Moratuwa, 2004.

N. Mathura y D. Cree, "Characterization and mechanical property of Trinidad coir fibers", Journal of Applied Polymer Science, vol. 133, n.º 29, pp. 1-9, 2016.

S. Delvasto, E. F. Toro, F. Perdomo y R. M. de Gutiérrez, "An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets", Construction and Building Materials, vol. 24, n.º 2, pp. 187-192, 2010.

O. A. González-Estrada, G. Díaz y J. Quiroga, "Mechanical response and damage of woven composite materials reinforced with fique". Key Engineering Materials, n.º 774, pp. 143-148, 2018.

S. Sengupta y G. Basu, "Properties of coconut fiber", en: Reference Module in Materials Science and Materials Engineering. Elsevier, 2016.

M. Pritchard, R. W. Sarsby y S. C. Anand, Handbook of Technical Textiles. Elsevier, 2000.

F. M. Al-Oqla y M. S. Salit, Materials Selection for Natural Fiber Composites. Kidlington: Woodhead Publishing, 2017.

T. Slootmaker, Industrial Applications of Natural Fibres. Chichester, UK: John Wiley & Sons, 2010.

A. Lefeuvre, A. Bourmaud, C. Morvan y C. Baley, "Elementary flax fibre tensile properties: Correlation between stress-strain behaviour and fibre composition", Industrial Crops and Products, n.º 52, pp. 762-769, 2014.

P. Navi, P. K. Rastogi, V. Gresse y A. Tolou, "Micromechanics of wood subjected to axial tension", Wood Science and Technology, vol. 29, n.º 6, pp. 411-429, 1995.

R. B. Yusoff, H. Takagi y A. N. Nakagaito, "Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers", Industrial Crops and Products, n.º 94, pp. 562-573, 2016.

N. Defoirdt, S. Biswas, L. de Vriese, L. Q. N. Tran, J. van Acker, Q. Ahsan, et al., "Assessment of the tensile properties of coir, bamboo and jute fibre", Composites Part A: Applied Science and Manufacturing, vol. 41, n.º 5, pp. 588-595, 2010.

J. E. G. van Dam, M. J. A. van den Oever, E. R. P. Keijsers, J. C. van der Putten, C. Anayron, F. Josol, et al., "Process for production of high density/high performance binderless boards from whole coconut husk. Part 2: Coconut husk morphology, composition and properties", Industrial Crops and Products, vol. 24, n.º 2, pp. 96-104, 2006.

P. Gañán e I. Mondragón, "Surface modification of fique fibers: Effect on their physico-mechanical properties", Polymer Composites, vol. 23, n.º 3, pp. 383-394, 2002.

H. Danso, "Properties of Coconut, oil palm and bagasse fibres: As potential building materials", Procedia Engineering, n.º 200 (June), pp. 1-9, 2017.

M. Ali, "Coconut fibre: A versatile material and its applications in engineering", BioResources, n.º 2, pp. 189-197, 2011.

M. Muñoz, M. Hidalgo y J. Mina, “Fibras de fique: una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial", Rev. Bio. Agro., vol. 12, n.º 2, pp. 60-70, 2014.

A.V. Dedov, B. A. Roev, V. I. Bobrov, G. B. Kulikov y V. G. Nazarov, "Mechanism of stretching and breaking of needle-punched nonwovens", Fibre Chemistry, vol. 49, n.º 5, pp. 334-337, 2018.

B.M. Patel y D. Bhrambhatt, "Nonwoven technology", Textile Technology, pp. 1-54, 2008.

Published

2020-04-24

How to Cite

Mechanical Behavior of Coir Fiber and Nonwovens. Comparison between Needle Punching and Chemical Bonding Parameters. (2020). Avances: Investigación En Ingeniería, 17(1 (Enero-Junio). https://doi.org/10.18041/1794-4953/avances.1.5255