Determination of mechanical properties of the palma de lata via tensile and shear tests
DOI:
https://doi.org/10.18041/1794-4953/avances.1.4733Keywords:
palma de lata, caracterización, matriz de rigidez, materiales transversalmente isótropos, esfuerzo, deformaciónAbstract
In this paper the process of characterization of the crust of the “palma de lata” (Bactris
guineensis) through the realization of tests based on the ASTM regulations is shown.
The method by which the samples are extracted from the crust via longitudinal slices
is described, also the tests and the obtained properties like elasticity modulus, shear
modulus and Poisson coefficients are defined to describe the mechanical behavior of
the palm. The results are analyzed and compared with similar woods to finally derive in
conclusions and give recommendations for future investigations.
The “Palma de lata” has been used mainly as construction material, its applications
range from ceiling cover to wall reinforcement in houses nearby from rivers in some
tropical zones of Colombia, however, in spite of the reduced current applications for
this palm the crust possess interesting properties worth studying.
The symbols used in this article are:
σ = Magnitude of the normal stress
Magnitude of shear stress
G = Shear modulus
= Angular deformation
= Poisson’s ratio
v = Magnitude in the tangential direction
t = Magnitude in the radial direction
l = Magnitude in the longitudinal direction
tr = Magnitude applied in directed to
tr = Magnitude applied in directed
lt = Magnitude applied in directed to
## = Position of a constant inside a matrix
Sij = Compliance matrix
Cij = Stiffness matrix
E = Elasticity modulus
ε = deformation per unit length
Downloads
References
M. Plotkin y L. Famolare, Eds., Sustainable harvest and marketing of rain forest products. Washington D.C.:
Island Press, 1992.
C. Osorio, J. G. Carriazo y O. Almanza, “Antioxidant activity of corozo (Bactris guineensis) fruit by electron
paramagnetic resonance (EPR) spectroscopy”, European Food Research and Technology, vol. 233, no. 1, pp.
-108, jul. 2011.
R. G. Prada-Garzón, I. J. Gil-González y A. Rey-Soto, Análisis y caracterización de las propiedades físicas
y mecánicas de la palma de lata. Bucaramanga: Universidad Industrial de Santander, 2008.
D. Chávez, F. García y A. Pertuz, Estudio del comportamiento dinámico de un material compuesto
laminado elaborado a partir de la corteza de la palma de lata. Bucaramanga: Universidad Industrial de
Santander, 2016.
R. Bernal y G. Galeano, “Corozo de Lata Bactris guineensis”, en Cosechar sin destruir: aprovechamiento
sostenible de palmas colombianas, R. Bernal y G. Galeano, Eds. Bogotá: Universidad Nacional de Colombia,
ASTM D3039/D3039M - 17. Standard test method for tensile properties of polymer matrix composite materials. American Society for Testing Materials, 2017.
ASTM D1037 - 12. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle
Panel Materials. American Society for Testing Materials, 2012.
ASTM E132 - 17. Standard Test Method for Poisson´s Ratio at Room Temperature. American Society for Testing
Materials, 2017.
ASTM D7078 - 12. Standard Test Method for Shear Properties of Composite Materials by V-Notched
Rail Shear Method. American Society for Testing Materials, 2012.
F. L. Palombini, W. Kindlein Jr, B. F. de Oliveira y J. E. de Araujo Mariath, “Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography”. Materials Characterization, vol. 120, pp. 357-368, oct. 2016.
United States Department of Agriculture, Wood handbook: Wood as an engineering material. Madison:
Forest Products Laboratory, 1999.
E. J. Barbero, Finite element analysis of composite materials using ANSYS®. Boca Raton: Taylor & Francis,
G. Suresh y L. S. Jayakumari, “Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced
interpenetrating polymer networks”, Polímeros, vol. 25, no. 1, pp. 49-57, en.- febr. 2015.
A. Brandt, J. Gräsvik, J. P. Hallett y T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids”,
Green Chemistry, vol. 15, no. 3, pp. 550-583, dic. 2013.
J. E. Winandy y R. M. Rowell, “Chemistry of wood strength”, en Handbook of wood chemistry and wood composites, R. M. Rowell, Ed. Boca Raton: CRC Press, 2012, pp. 428-471.
A. P. Schniewind y J. D. Barrett, “Wood as a linear orthotropic viscoelastic material”, Wood Science and Technology, vol. 6, no. 1, pp. 43-57, mzo. 1972.
B. M. Lempriere, “Poisson’s ratio in orthotropic materials”, AIAA Journal, vol. 6, no. 11, pp. 2226-2227, 1968.
D. Huang, Y. Bian, A. Zhou y B. Sheng, “Experimental study on stress–strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys”. Construction and Building Materials, vol. 77,
pp. 130-138, febr. 2015.
A. Zhou, D. Huang, H. Li y Y. Su, “Hybrid approach to determine the mechanical parameters of fibers and
matrixes of bamboo”, Construction and Building Materials, vol. 35, pp. 191-196, oct. 2012.