Electrochemical behavior of corrosion of a sinterized stainless steel with different boron additions

Authors

  • José Angel Cabral Miramontes Centro de Investigación en Materiales Azanzado S.C
  • Oscar Barceinas Sánchez Centro de investigación en Ciencia Aplicada y Tecnología Avanzada
  • Facundo Almeraya Calderón Centro de Investigación en Materiales Azanzado S.C
  • José Chacón Nava Centro de Investigación en Materiales Azanzado S.C
  • Alberto Martínez Villafañe Centro de Investigación en Materiales Azanzado S.C

Keywords:

Boron, Corrosion, Liquid phase, powder metallurhy, sintering

Abstract

Powder metallurgy (PM) is an effective method tomanufacture high quality and accurate parts at alow cost. However, the use of these parts is limiteddue to their low sintered density, which reduces thecorrosion resistance. The objective of the presentwork was to determine the corrosion behavior of409Nb stainless steel specimens sintered and dopedwith different boron contents. The boron is addedto promote the formation of a liquid phase duringsintering at 1,150 oC, which consequently seducesthe amount of porosity and increases the density,resulting in an improved corrosion resistance. Forthis study the techniques of linear polarizationresistance (LPR) and electrochemical noise (EN) inboth potential and current were used. The LPR andEN techniques were used to know the corrosionbehavior of specimens with and without boronadditions in two solutions, namely 0.5M of H2SO4and 0.5M of NaCl. The results obtained allowed toestimate the corrosion rate and disclose the corrosionmechanism. It was concluded that the specimensdoped with boron are more susceptible to corrosionin both solutions due to the precipitation ofchromium rich compounds. The EN measurementsindicate attack by mixed corrosion in the H2SO4solution, whereas in the NaCl solution the samplessuffered localized corrosion.

Downloads

Download data is not yet available.

References

1. Schatt W., Wieters K. P., Powder Metallurgy.; EPMA;(1997).

2. L. A. Dobrzański, Z. Brytan, M. Actis Grande, M.Rosso. J Mater Process Tech. Vol. 191, pp 161-164,(2007).

3. M. Sarasola, T. Gomez-Acebo and F. Castro. PowderMetall. Vol. 48. No.1. pp 59-67 (2005).

4. A. Bautista, F. Velasco, J. Abenojar. CorrosionScience. Vol. 45, pp. 1343–1354 (2003).

5. E. Otero, A. Pardo, M. V. Utrilla, E. Sáenz, J. F.Álvarez. Corrosion Science. Vol. 40, pp 1421-1434(1998).

6. ASTM G 199-09.” Standard guide for electrochemicalnoise measurement” (2009)

7. ASTM G59-97 “Standard test method forconducting potentiodynamic polarization resistancemeasurements” (1997).

8. M. Stern, A. L. Geary. J. Electrochem. Soc. Vol. 104(1), pp 56-63, (1957).

9. C. Padmavathi, A. Upadhyaya, and D. Agrawal.Scripta Materiali. Vol. 57, pp 651-654, (2007).

10. E. Otero, A. Pardo, M. V. Utrilla, F. J. Pérez andC. Merino. Corrosion Science.Vol. 39, pp 453-463,(1997).

11. A. John Sedriks “Corrosion of stainless steels”Second edition. The electrochemical society, INC.Princeton, New Jersey. (1996).

12. S. Balaji, G. Joshi and A. Upadhyaya. ScriptaMaterialia. Vol. 56. pp 149-151, (2007).

13. Kelly, R. G., Inman, M. E., and Hudson, J. L.,Electrochemical noise measurements for corrosionapplications, American Society for Testing andMaterials, pp 101-113, (1996).

14. J. A Cabral, O. Barceinas, F. Almeraya, J. Chacón, A.Martínez. Articulo 13. XXX Congreso Internacionalde Metalurgia y Materiales. Instituto Tecnológico deSaltillo. (2008).

Downloads

Published

2010-06-01

How to Cite

Electrochemical behavior of corrosion of a sinterized stainless steel with different boron additions. (2010). Avances: Investigación En Ingeniería, 1(12), 14-20. https://revistas.unilibre.edu.co/index.php/avances/article/view/2670