Effect of pretreatment dilute acid -peroxide on napier grass (pennisetum purpureum schumach) to enhance reducing sugar yield by enzymatic hydrolysis
DOI:
https://doi.org/10.18041/1794-4953/avances.2.226Keywords:
Dilute acid, Hydrolysis, reducing sugars, napier, grass, Pennisetum purpureum, PeroxideAbstract
The napier grass (Pennisetum purpureum Schumach.) is a potential feedstock biomass for conversion to ethanol, bio-energy or high added value products. Variation in prehydrolysis parameters (time, acid strength, biomass %, particle size) and enzymatic saccharification conditions were examined for conversion of napier grass into fermentable sugars. A pretreatment of the water insoluble substrate (WISH2 SO4 ) at 15.1 % of reducing sugar yield (RSY) was done with peroxide (H2 02 ) at 122 °C. The relationship between RSY and the acid process parameters are described by a mathematical model derived from the experimental data.The peroxide pretreatment at 0.7 % (w/w), 4.75 mm particle size, 8% (w/v) biomass concentration, improved the RSY production from enzymatic hydrolysis in 97.6 % after 75 min. The enzymatic hydrolysis produced 287.81 mg/(g initial dry sample) of glucose and 245.81 mg/(g initial dry sample) of Xylose. Therefore, it was concluded that combination peroxide - acid pretreatment is an effective and environmentally friendly method for the enzyme hydrolysis of napier grass.
Downloads
References
Sheehan, J., Himmel, M. (1999) Enzymes, energy,and the environment: Cellulose development in theemerging bioethanol industry. Biotechnol Progr, 15,817-827
Sakai, S., Tsuchida, Y., Nakamoto, I., Okino,S., Ichihashi, O., Kawaguchi, H., et al. (2007).Effect of lignocellulose-derived inhibitors ongrowth of and ethanol production by growtharrestedCorynebacterium glutamicum R. ApplEnviron Microbiol 73, 2349-2353.
Anderson, W., Peterson, J., Akin, D., MorrisonW. (2005). Enzyme Pretreatment ofGrass Lignocellulose for Potential High-ValueCo-products and an Improved FermentableSubstrate. Applied Biochem Biotechnol, 121, 303-310.
Ballesteros, I., Ballesteros, M., Manzanares, P.,Negro, J., Oliva, J, Sáez, F. (2008). Dilute sulfuricacid pretreatment of cardoon for ethanolproduction. Biochem Eng. J., 42, 84-91.
Mosier, N., Wyman, C., Dale, B., Elander, R.,Lee, Y., Holtzapple, M., Ladisch, M. (2005).Features of promising technologies for pretreatmentof lignocellulosic biomass. Bioresour.Technol, 96, 673-686.
El-Zawawya, W., Ibrahima, M., Abdel-Fattahb,Y., Nadia, A., Solimanb, N., Mahmoudc, M.(2011). Acid and enzyme hydrolysis to convertpretreated lignocellulosic materials into glucosefor ethanol production. Carbohydr Polymers, 84,865-871.
Chen, W., Tu, Y., Sheen, H. (2010). Impact ofdilute acid pretreatment on the structure ofbagasse for bioethanol production. Int J EnergyRes, 34, 265-274 (2010).
Jung. S., Foston, M., Sullards, M., RagauskasA. (2010). Surface characterization of diluteacid pretreated Populus deltoides by ToF-SIMS.Energy Fuels, 24,1347-1357.
Mao, J., Holtman, K., Franqui-Villanueva D.(2010). Chemical structures of corn stover andits residue after dilute acid prehydrolysis andenzymatic hydrolysis: Insight into factors limitingenzymatic hydrolysis. J. Agric. Food Chem, 58,11680-11687.
Pingali, S., Urban, V., Heller, W., McGaughey,J., O’Neill, H., Foston, M., et al. (2010). Breakdownof cell wall nanostructure in dilute acidpretreated Biomass. Biomacromol, 11, 2329-2335.
Sannigrahi, P., Ragauskas, A., Miller, S. (2008).Effects of two-stage dilute acid pretreatmenton the structure and composition of lignin andcellulose in loblolly pine. Bioenergy Res, 1, 205-214.
Zhang, J., Ma, X., Yu, J., Zhang, X., Tan, T.(2011). The effects of four different pretreatmentson enzymatic hydrolysis of sweetsorghum bagasse. Bioresour. Technol. 102, 4585-4589.
Elander, R., Dale, B., Holtzapple, M., Ladisch,M., Lee, Y., Mitchinson, C., et al. (2009). Summaryof findings from the Biomass RefiningConsortium for Applied Fundamentals andInnovation (CAFI): corn stover pretreatment.Cellulose 16,649-659.
Quintero, J., Montoya, M., Sánchez, O., Giraldo,O., Cardona, C. (2008). Fuel ethanol productionfrom sugarcane and corn: comparative analysisfor a Colombian case. Energy, 33, 385-399.
Rabelo, S., Amezquita-Fonseca, N., Andrade,R., Filho, M., Costa, A. (2011). Ethanol productionfrom enzymatic hydrolysis of sugarcanebagasse pretreated with lime and alkaline hydrogenperoxide. Biomass Bioenergy, 35, 2600-2607.
Gould, J. (1985). Studies on the mechanism ofalkaline peroxide delignification of agriculturalresidues. Biotechnol Bioeng, 27, 225-231.
Lachenal, D., De Choudens, C., Monzie, P.(1980). Hydrogen peroxide as a delignifyingagent. Tappi J, 63, 119-122 .
Azzam, A. (1989). Pretreatment of canebagasse with hydrogen peroxide for enzymatichydrolysis of cellulose and ethanol fermentation.J. Environ. Sci. Health B., 24, 421-433.
Yamashita, Y., Shono, M., Sasaki, Ch., Nakamura,Y. (2010). Alkaline peroxide pretreatmentfor efficient enzymatic saccharification ofbamboo. Carbohydr Polym, 79 , 914–920.
Ayeni, A., Hymore, F., Mudliar, S., Deshmukh,S., Satpute, D., Omoleye, J., Pandey, R. (2013).Hydrogen peroxide and lime based oxidativepretreatment of wood waste to enhanceenzymatic hydrolysis for a biorefinery: Processparameters optimization using response surfacemethodology. Fuel, 106, 187-194.
Yáñez, R., Alonso, J., Parajó, J. (2006). Enzymaticsaccharification of hydrogen peroxide-treatedsolids from hydrothermal processing of ricehusks. Process Biochem, 41,1244-1252.
Gao, M., Yano, S., Inoue, H., Sakanishi, K.(2012). Combination of wet disk milling andhydrogen peroxide treatments for enhancingsaccharification of sugarcane bagasse. BiochemEng J., 68,152-158 .
Tan, H., Yang, R., Sun, W., Wang, S. (2010).Peroxide Acetic Acid Pretreatment to RemoveBagasse Lignin Prior to Enzymatic Hydrolysis.Ind Eng Chem Res, 49, 1473-1479.
Sun, R., Tomkinson, J., Zhu, W., Wang, S.(2000). Delignification of maize stems byperoxy-mono-sulfuric acid, peroxy-formicacid, per-acetic acid, and hydrogen peroxide.1. Physicochemical and structural characterizationof the solubilized lignins. J Agric Food Chem,48,1253-1262.
Nimz, H., Schwind, H. (1979). Oxidation ofmonomeric lignin model compounds with peraceticacid. Cellulose Chem Techno,13, 35-46.
Yuan, Z., Ni, Y., Heiningen, A. (1998). Animproved peracetic acid bleaching process.Appita J., 51, 377-380.
Teixeira, L., Linden, J., Schroeder, H. (2000).Simultaneous saccharification and cofermentationof peracetic acid-pretreated biomass. ApplBiochem Biotechnol, 84-86,111-127.
Teixeira, L., Linden, J., Schroeder, H. (1999).Optimizing peracetic acid pretreatment conditionsfor improved simultaneous saccharificationand co-fermentation (SSCF) of sugar can bagasseto ethanol fuel. Renew Ener, 16,1070-1073.
Khama, L., Bigot, Y., Delmas, M., Avignon, G.(2005). Delignification of wheat straw using amixture of carboxylic acids and peroxoacids IndCrops Prod, 21, 9-15.
National Renewable Energy Laboratory(NREL). (2008). Chemical Analysis andTesting Laboratory Analytical Procedures:TP-510-42620, TP-510-42619, TP-510-42621,TP-510-42622, TP-510-42623, TP- 222 om-98,Golden, USA. www.ott.doe.gov/biofuels/analyticalmethods.html.
Miller, G.(1959). Glucose DNS Metodology.Anal Chem, 31, 426-428.
Ghose, T. (1987). Measurement of cellulaseactivities. Pure Appl Chem, 59, 257-268.
Madakadze, C., Masamvu, T., Radiotis, T., Li, J.,Smith, D. (2010). Evaluation of pulp and papermaking characteristics of elephant grass (Pennisetumpurpureum Schum) and switchgrass(Panicum virgatum L.). African J Environ SciTechnol, 4,465-470.
López , A., Ortegón, G., Robles, F. (2010).Obtaining of Reducing Sugars from KikuyuGrass (Pennisetum Clandestinum). AvancesInvest Ing., 13:98-101.
Prinsen, P., Gutiérrez, A., Del Río, J. (2012).Lipophilic Extractives from the Cortex andPith of Elephant Grass (Pennisetum purpureumSchumach.) Stems. J Agric Food Chem., 60, 6408-6417.
Del Río, J., Prinsen, P., Rencoret, J., Nieto, L.,Jiménez-Barbero, J., Ralph, J., et al. (2012).Structural Characterization of the Lignin inthe Cortex and Pith of Elephant Grass (Pennisetumpurpureum) Stems. J Agric Food Chem.,60, 3619–3634.
Sun, Y., Cheng, J. (2005). Diluted acid pretreatmentof rye straw and Bermuda grass forethanol production. Bioresource Technol., 96,1599-1606.
Anderson, W., Adien, B., Brandon, S., PetersonJ. (2008).Assesment of Bermuda grass andbunch grasses as feedstock for conversion toethanol. Appl. Biochem. Biotechnol, 145, 13-21.
Hodge, D., Karim, M., Schell, D., Macmillan, J.(2008). Soluble and insoluble solids contributionsto high-solids enzymatic hydrolysis oflignocellulose. Bioresour. Technol, 99, 8940-8948.
Magcale – Macandog, D., Predo, C., Menz, K.(1998). Napier grass strips and livestock: a bioeconomicanalysis. Agrofores Sys., 40, 41-58.
Somerville, Ch., Youngs, H., Taylor, C., Davis,S., Long, S. (2013). Feedstocks for lignocellulosicbiofuels. Scien., 329, 790-792.
Su, Z., Bu, L., Zhao, D., Sun, R., Jiang, J. (2012).Processing of Lespedeza stalks by pretreatmentwith low severity steam and post-treatmentwith alkaline peroxide. Ind Crops and Prod., 36,1-8.
Ogundipe, A., Lu, Y. (1989). Ethanol productionfrom dilute acid hydrolyzate of sawdusttreated with hydrogen peroxide. Biomass., 20,291-299.
Kupiainen, L., Ahola, J., Tanskanen, J. (2012).Distinct Effect of Formic and Sulfuric Acidson Cellulose Hydrolysis at high temperatures.Ind Eng Chem Res., 51,3295-3300.
Arora, A., Martin, E., Pelkki, M., Carrier, D.(2013). Efect of Formic Acid and Furfural onthe Enzymatic Hydrolysis of Cellulose Powderand Dilute Acid-Pretreated Poplar Hydrolysates.ACS sustainable Chem Eng., 1, 23-28.