Comparative study of the use of different agents of sacrifice for the production of hydrogen by heterogeneous photocatalysis using the mineral black sand as a semiconductor

Authors

  • ANDRES FELIPE LOPEZ VASQUEZ UNIVERSIDAD DE LA SABANA
  • JORGE EDAURDO CABEZAS SILVA UNIVERSIDAD LIBRE

DOI:

https://doi.org/10.18041/1794-4953/avances.1.1372

Keywords:

Black sand, Photocatalytic hydrogen production, Sacrificial agent

Abstract

Black sand mineral is a mixture of iron oxides (FeO, Fe2O3, Fe3O4), TiO2 and SiO2 presents in a natural structure, which could be used as a semiconductor. In this work, we evaluated the effect of the sacrificial agent for the photocatalytic hydrogen production using this material as a catalyst. For this purpose, the effect of process variables such as type of sacrificial agent (EDTA, Na2SO3 and CH3OH), normally used as electron donors in the photocatalytic reaction of hydrogen production, initial pH of the suspension (3.0, 7.0 and 9.0) and the concentration of the substrate, were tested. These varied between 1.0, 25.0 and 50.0 mM for EDTA and Na2SO3, and 10.0, 30.0 and 50.0% (v / v) for methanol. Under the reaction conditions evaluated, the maximum hydrogen production levels were Na2SO3>EDTA>CH3OH, respectively, and the maximum hydrogen production was obtained with 25 mM Na2SO3 in acid medium (pH 7.0). The degradation of EDTA and simultaneous production of hydrogen by photocatalytic reaction, were favored at pH 3.0 and a concentration 1.0 mM.

Downloads

Download data is not yet available.

References

A. Demirbas, Biodiesel: A realistic fuel alternative for diesel engines. Londres: Springer-Verlag, 2008.

Y. Z. Yang, C.-H. Chang y H. Idriss, “Photocatalytic production of hydrogen form ethanol over M/TiO2 catalysts (M= Pd,Pt or Rh)”, Applied Catalysis B: Environmental, vol. 67, no. 3-4, pp. 217-222, oct. 2006. http://doi.org/10.1016/j.apcatb.2006.05.007

W. Lv, X. Lv, J. Xiang, Y. Zhang, S. Li, C. Bai, B. Song y K. Hanb, “A novel process to prepare high-titanium slag by

carbothermic reduction of pre-oxidized ilmenite concentrate with the addition of Na2SO4”, International Journal

of Mineral Processing, vol. 167, pp. 68-78, oct. 2017. http://doi.org/10.1016/j.minpro.2017.08.004

E. C. Su, B. S. Huang, C. C. Liu y M. Y. Wey, “Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts. Renewable Energy, vol. 75, pp. 266-271, mzo. 2015. http://doi.org/10.1016/j.renene.2014.09.052

C. G. Silva, M. J. Sampaio, R. R. Marques, L. A. Ferreira, P. B. Tavares, A. M. Silva y J. L. Faria, “Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO 2 catalysts”, Applied Catalysis B: Environmental, vol. 178, pp. 82-90, nov. 2015. http://doi.org/10.1016/j.apcatb.2014.10.032

A. Petala, E. Ioannidou, A. Georgaka, K. Bourikas y D. I. Kondarides, “Hysteresis phenomena and rate fluctuations under conditions of glycerol photo-reforming reaction over CuOx/TiO2 catalysts. Applied Catalysis B: Environmental, vol. 178, pp. 201-209, nov. 2015. http://doi.org/10.1016/j.apcatb.2014.09.021

F. N. Ridha, M. A. Duchesne, X. Lu, D. Y. Lu, D. Filippou y R. W. Hughes, “Characterization of an ilmenite ore

for pressurized chemical looping combustion”, Applied Energy, vol. 163, pp. 323-333, febr. 2016. http://doi.

org/10.1016/j.apenergy.2015.10.070

M. P. Sharma, J. F. Akyurtlu y A. Akyurtlu, “Autothermal reforming of isobutanol over promoted nickel xerogel catalysts for hydrogen production”, International Journal of Hydrogen Energy, vol. 40, no. 39, pp. 13368-13378, oct. 2015. http://doi.org/10.1016/j.ijhydene.2015.07.113

Y. Bang, S. Park, S. Ju, H. Jaekyeong, Y. Ji, H. Song, J. Ho, C. Ki, H. Kang e I. K. Song, “Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al2O3 catalyst prepared by an EDTA-assisted impregnation method”, Applied Catalysis B: Environmental, vol. 180, pp. 179-188, en. 2016. http://doi.org/10.1016/j.apcatb.2015.06.023

U. I. Gaya y A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium

dioxide: A review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C:

Photochemistry Reviews, vol. 9, no. 1, pp. 1-12, mzo. 2008. http://doi.org/10.1016/j.jphotochemrev.2007.12.003

I. Z. Ismagilov, E. V. Matus, V. V. Kuznetsov, N. Mota, R. M. Navarro, S. A. Yashnik, I. P. Prosvirina, M. A. Kerzhentseva, Z. R. Ismagilovac y J. L. G. Fierro, “Hydrogen production by autothermal reforming

of methane: Effect of promoters (Pt, Pd, Re, Mo, Sn) on the performance of Ni/La2O3 catalysts”, Applied Catalysis

A: General, vol. 481, pp. 104-115, jul. 2014. http://doi.org/10.1016/j.apcata.2014.04.042

M. A. Schoonen, Y. Xu y Strongin, D. R., “An introduction to geocatalysis”, Journal of Geochemical Exploration,

vol. 62, no. 1-3, pp. 201-215, jun. 1998. http://doi.org/http://dx.doi.org/10.1016/S0375-6742(97)00069-1

V. R. Shenoy y J. B. Joshi, “Kinetics of oxidation of aqueous sulphite solution by nitric oxide”, Water Research, vol. 26, no. 7, pp. 997-1003, jul. 1992.

G. A. Reyes Gómez, Producción fotocatalitica de hidrógeno basada en el mineral arena negra como semiconductor. Bogotá: Universidad Libre, 2015.

P. P. C. Udani y M. Rønning, “Comparative study on the photocatalytic hydrogen

production from methanol over Cu-, Pd-, Co-and Au-loaded TiO2”, Oil & Gas Science and Technology, vol. 70, no. 5, pp. 831-839, sep.-oct. 2015. http://doi.org/10.2516/ogst/2015025

A. Boudjemaa, A. Rebahi, B. Terfassa, R. Chebout, T. Mokrani, K. Bachari y N. J. Coville, “Fe2O3/carbon spheres for

efficient photo-catalytic hydrogen production from water and under visible light irradiation”, Solar Energy

Materials and Solar Cells, vol. 140, pp. 405-411, sep. 2015. http://doi.org/10.1016/j.solmat.2015.04.036

A. Madhumitha, V. Preethi y S. Kanmani, “Photocatalytic hydrogen production using TiO2 coated iron-oxide core

shell particles”, International Journal of Hydrogen Energy, vol. 43, no. 8, pp. 3946-3956, febr. 2018. http://doi.

org/10.1016/j.ijhydene.2017.12.127

M. Ni, M. K. Leung, D. Y. Leung y K. Sumathy, “A review and recent developments in photocatalytic water-splitting

using TiO2 for hydrogen production”, Renewable and Sustainable Energy Reviews, vol. 11, no. (3), pp. 401-425, 2007. http://doi.org/10.1016/j.rser.2005.01.009

P. Chen, J. Zhai, W. Sun, Y. Hu, Z. Yin y X. Lai, “Adsorption mechanism of lead ions at ilmenite/water interface and

its influence on ilmenite flotability”, Journal of Industrial And Engineering Chemistry, vol. 53, pp. 285-293,

sept. 2017. http://doi.org/10.1016/j.jiec.2017.04.037

S. Rahimi, M. Irannajad y A, Mehdilo, “Effects of sodium carbonate and calcium chloride on calcite depression in cationic flotation of pyrolusite”, Transactions of Nonferrous Metals Society of China, vol. 27, no. 8, pp. 1831-1840, ago. 2017. http://doi.org/10.1016/S1003-6326(17)60206-1

G. L. Chiarello, D. Ferri y E. Selli, “In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2”, Applied Surface Science, vol. 450, pp. 146-154, ago. 2018. http://doi.org/10.1016/j.apsusc.2018.04.167

M. N. Chong, B. Jin, C. W. Chow y C. Saint, “Recent developments in photocatalytic water treatment technology: A

review”, Water Research, vol. 44, no.10, pp. 2997-3027, my. 2010. http://doi.org/10.1016/j.watres.2010.02.039

Downloads

Published

2018-12-24

How to Cite

Comparative study of the use of different agents of sacrifice for the production of hydrogen by heterogeneous photocatalysis using the mineral black sand as a semiconductor. (2018). Avances: Investigación En Ingeniería, 15(1), 77-85. https://doi.org/10.18041/1794-4953/avances.1.1372

Most read articles by the same author(s)