Routes and challenges for biogas valorization

Authors

  • Andrea Navarro Puyuelo Universidad Pública de Navarra (UPNA), Pamplona, España.
  • Inés Reyero Universidad Pública de Navarra (UPNA), Pamplona, España.
  • Ainara Moral Universidad Pública de Navarra (UPNA), Pamplona, España.
  • Fernando Bimbela Universidad Pública de Navarra (UPNA), Pamplona, España.
  • Luis Gandia Universidad Pública de Navarra (UPNA), Pamplona, España.

DOI:

https://doi.org/10.18041/1794-4953/avances.1.1299

Keywords:

Biogas purification, Biomethane, Catalytic reforming of biogas, GtL technologies, Syngas

Abstract

The development of anaerobic digestion technologies for processing various residual streams (the organic fraction of landfill wastes, sewage sludge from wastewater treatment plants, pig and cow manure, etc.) has led to an increase in the production of biogas. Biogas is mainly composed of methane and carbon dioxide, though other minor compounds and impurities are present, hence different treatments must be applied for its purification and conditioning. Amidst the va­rious alternatives for its use and valorization, the most important are the following: direct use in the generation of heat and/or electric power, upgrading to biomethane, and syngas production (H2+CO), which is further used as raw material for producing liquid fuels and/or chemicals such as methanol. This work presents an overview on the different alternatives for biogas valorization, with special emphasis on catalytic reforming processes, such as dry and steam reforming, together with combined reforming routes including partial oxidation.

Downloads

References

Djinović, P., Črnivec, I. G. O., Batista, J.,Levec, J., Pintar, A. (2011). Catalyticsyngas production from greenhousegasses: Performance comparison ofRu-Al2O3 and Rh-CeO2 catalysts, Chem.Eng. Process. Process Intensif. 50,1054–1062.

Rasi, S., Veijanen, A., Rintala, J. (2007). Tracecompounds of biogas from differentbiogas production plants, Energy 32,1375–1380.

Salihu, A., Alam, M. Z. (2015). Upgradingstrategies for effective utilization ofbiogas, Environ. Prog. Sustain. Energy34, 1512–1520.

Abatzoglou, N., Boivin, S. (2009). A reviewof biogas purification processes,Biofuels, Bioproducts and Biorefining3, 42–71.

Petersson, A., Wellinger, A. (2009). Biogasupgrading technologies – developmentsand innovations, IEA Bioenergy.

Harikishan, S. (2008) Biogas Processingand Utilization as an Energy Source.En: Anaerobic Biotechnology for BioenergyProduction: Principles and Applications(ed S. K. Khanal), Oxford,Wiley-Blackwell (12).

Saha, D., Grappe, H. A., Chakraborty, A.,Orkoulas, G. (2016). PostextractionSeparation, On-Board Storage, andCatalytic Conversion of Methane inNatural Gas: A Review, Chem. Rev. 116,11436-11499.

Sun, Q., Li, H. Yan, J., Liu, L., Yu, Z., Yu, X.(2015). Selection of appropriate biogasupgrading technology-a reviewof biogas cleaning, upgrading andutilization, Renew. Sustain. EnergyRev. 51, 521–532.

Budzianowski, W. M. (2016). A review ofpotential innovations for production,conditioning and utilization ofbiogas with multiple-criteria assessment,Renew. Sustain. Energy Rev.54, 1148–1171.

Pellegrini, L.M.., De Guido, G., Langé, S.(2017). Biogas to liquefied biomethanevia cryogenic upgrading technologies,Renew. Energ. Artículo en impresión(doi: 10.1016/j.renene.2017.08.007).

The State of Renewable Energies in Europe.(2017). 2016 Edition. EurObserv’ERReport.

Niesner, J., Jecha, D., Stehlík, P. (2013). Biogasupgrading technologies: State ofart review in european region, Chem.Eng. Trans. 35, 517–522.

Yeh, S. (2007). An empirical analysis on theadoption of alternative fuel vehicles:The case of natural gas vehicles, EnergyPolicy 35, 5865–5875.

Khan, M. I., Yasmin, T., Shakoor, A. (2015).Technical overview of compressednatural gas (CNG) as a transportationfuel, Renew. Sustain. Energy Rev. 51,785–797.

Okeke, I. J., Mani, S. (2017). Techno-economicassessment of biogas to liquidfuels conversion technology viaFischer-Tropsch synthesis, Biofuels,Bioprod. Biorefining 11, 472–487.

Horn, R., Schlögl, R. (2015). Methane Activationby Heterogeneous Catalysis,Catal. Letters 145, 23–39.

Pakhare, D., Spivey, J. (2014). A review ofdry (CO2) reforming of methane overnoble metal catalysts, Chem. Soc. Rev.43, 7813–7837.

Ahmed, S., Lee, S. H. D., Ferrandon, M. S.(2015). Catalytic steam reforming ofbiogas - Effects of feed compositionand operating conditions, Int. J. HydrogenEnergy 40, 1005–1015.

Djinović, P., Črnivec, I. G. O., Pintar, A.(2015). Biogas to syngas conversionwithout carbonaceous deposits viathe dry reforming reaction using transitionmetal catalysts, Catal. Today253, 155–162.

Choudhary, T. V., Choudhary, V. R. (2008).Energy-Efficient Syngas Productionthrough Catalytic Oxy-Methane ReformingReactions, Angew. ChemieInt. Ed. 47, 1828–1847.

Moral, A., Reyero, I., Alfaro, C., Bimbela,F., Gandía, L. M. (2017). Syngas productionby means of biogas catalyticpartial oxidation and dry reformingusing Rh-based catalysts, Catal. Todayaceptado, en prensa, d.o.i.: 10.1016/j.cattod.2017.03.049.

Izquierdo, U., Barrio, V. L., Requies, J.,Cambra, J. F., Güemez, M. B., Arias, P.L. (2013). Tri-reforming: A new biogasprocess for synthesis gas and hydrogenproduction, Int. J. Hydrogen Energy38, 7623–7631.

Amin, N. A. S., Yaw, T. C. (2007). Thermodynamicequilibrium analysis of combinedcarbon dioxide reforming with partialoxidation of methane to syngas, Int. J.Hydrogen Energy 32, 1789–1798.

Lau, C. S., Tsolakis, A., Wyszynski, M. L.(2011). Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming,Int. J. Hydrogen Energy 36, 397–404.

Alfadala, H., Reklaitis, G. V., El-Halwagi, M.M. (2008). En: Proceedings of the 1stannual Gas Processing Symposium :10-12 January, 2009 – Qatar, ElsevierScience.

Wood, D. Saeid Mokhatab, M. J. E. (2008).“Technology options for securingmarkets for remote gas”. En: Proceedingsof 87th Annual Conventionof the Gas Processors Association,GPA (11)

Kawi, S., Kathiraser, Y., Ni, J., Oemar, U.,Li, Z., Saw, E. T. (2015). Progress inSynthesis of Highly Active and StableNickel-Based Catalysts for CarbonDioxide Reforming of Methane, ChemSusChem8, 3556–3575.

Bimbela, F., Ábrego, J., Puerta, R., García,L., Arauzo, J. (2017). Catalytic steamreforming of the aqueous fraction ofbio-oil using Ni-Ce/Mg-Al catalysts,Appl. Catal. B Environ. 209, 346–357.

Cao, C., Bourane, A., Schlup, J. R., Hohn,K. L. (2008). In situ IR investigationof activation and catalytic ignition ofmethane over Rh/Al2O3 catalysts, Appl.Catal. A Gen. 344, 78–87.

Wang, B., Albarracín-Suazo, S., Pagán-Torres,Y., Nikolla, E. (2017). Advances inmethane conversion processes, Catal.Today 285, 147–158.

Zhu, Q., Zhao, X., Deng, Y. (2004). Advancesin the Partial Oxidation of Methane toSynthesis Gas, J. Nat. Gas Chem. 13,191–203.

Fan, M.-S., Abdullah, A. Z., Bhatia, S. (2009).Catalytic Technology for Carbon DioxideReforming of Methane to Synthesis Gas,ChemCatChem 1, 192–208.

Moral, A. (2017). Desarrollo de catalizadoresde cobalto y rodio para la producciónde gas de síntesis por oxidación parcialde metano. Tesis Doctoral. UniversidadPública de Navarra, Pamplona, España.

Kumar, N., Shojaee, M., Spivey, J. (2015).Catalytic bi-reforming of methane:from greenhouse gases to syngas,Curr. Opin. Chem. Eng. 9, 8–15.35. Ross, J. (2005) Natural gas reforming andCO mitigation, Catal. Today, 100, 151–158.

Downloads

Published

2017-12-15

How to Cite

Navarro Puyuelo, A., Reyero, I., Moral, A., Bimbela, F., & Gandia, L. (2017). Routes and challenges for biogas valorization. Avances: Investigación En Ingeniería, 14(1), 211-224. https://doi.org/10.18041/1794-4953/avances.1.1299