Control of temperature profiles of a muffle-type furnace for pyrolysis testing
DOI:
https://doi.org/10.18041/1794-4953/avances.1.10362Keywords:
Pyrolysis, Polymers, modelling, furnace, temperature profileAbstract
In The energy requirements and economies of scale used for energy applications provide valuable information in studies on the energy transformations of different plastic waste. Proper control of pyrolysis reactors requires mathematical modeling that allows for the establishment of appropriate variables and heating times. This research presents the results of a simulation of a pyrolysis reactor to determine the effect of the physical parameters of the heating system on the time required to reach a maximum temperature that could be controlled. Specialized software (such as CAE and MATLAB) was used for simulation and to compare the temperature profiles obtained through simulation with the temperature record of an actual pyrolysis reactor. The ANSYS simulation was performed in a transient state. The results obtained demonstrate that the simulation process and the heating of the electric furnace lead to the conclusion that the system of equations used in the process is suitable for the availability furnace.
Downloads
References
S. T. V. Zhiznin, «Energy impact on sustainable development,» World Economy and International Relations, vol. 61, nº 11, pp. 34-42, 2017.
J. Y. C. Chanathaworn, «Upgrading of Bio-oil from Energy Crops via Fast Pyrolysis using Nanocatalyst in a Bubbling Fluidized Bed Reactor,» International Energy Journal, vol. 22, nº 1, pp. 71-80, 2022.
B. V.-L. J. M.-P. J. Gavio, «Trash in paradise: marine debris on the beaches of San Andres Island, Seaflower Biosphere Reserve, Colombian Caribbean | Basura en el paraiso: desechos marinos en las playas de la isla de San Andres, Reserva de Biosfera Seaflower, Caribe colombiano,» Boletin de Investigaciones Marinas y Costeras, vol. 51, nº 1, pp. 37-52, 2022.
L. C. F.-X. G. J. Brown, «Pyrolysis of fibre residues with plastic contamination from a paper recycling mill: Energy recoveries,» Energy Conversion and Management, Vols. %1 de %2110-117, p. 2017, 133.
A. J. N. C. A. .. D. A. A.-S. S. Antelava, «Energy Potential of Plastic Waste Valorization: A Short Comparative Assessment of Pyrolysis versus Gasification,» Energy and Fuels, vol. 35, nº 3558-3571, p. 5, 2021.
A. A. A. S. H. .. A. A. A.-W. M. Elnour, «Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites,» Applied Sciences (Switzerland), vol. 9, nº 6, p. 1149, 2019.
«European International Powder Metallurgy Congress and Exhibition, Euro PM 2012,» de Proceedings of the International Euro Powder Metallurgy Congress and Exhibition, Europe, 2012.
L. A. Monteros V., Diseño y construcción de un horno mufla para la realización de tratamientos térmicos en Aceros, Ibarra, Ecuador: 2015, Universidad Técnica del Norte.
O. D. S.-N. Z. T.-S. S. Q. X. L. J. Yuanhua Qiao, «Pyrolysis Kinetic Study and Reaction Mechanism of Epoxy Glass Fiber Reinforced Plastic by Thermogravimetric Analyzer (TG) and TG–FTIR (Fourier-Transform Infrared) Techniques,» Polymers, vol. 12, nº 11, pp. 1-16, 2020.
S. A. P. A. I. M. T. N. J. E. Myriam Mancheno, «Aprovechamiento energético de residuos plásticos obteniendo combustibles líquidos, por medio de pirólisis,» LA GRANJA. Revista de Ciencias de la Vida, vol. 23, nº 1, pp. 60-67, 2016.
R. H. B. D. Y. L. W. M. J. Zhou, «Thermal decomposition mechanism and kinetic study of plastic waste chlorinated polyvinyl chloride,» Polymers, vol. 11, nº 12, p. 2080, 2019.
F. R. G. Richter, «A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale,» Combustion and Flame, vol. 216, pp. 316-325, 2020.
S. G. P. V. L. Papuga, «Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor,» Thermal Science, vol. 20, nº 2, pp. 731-741, 2016.
C. M. O. C. L. C. J. M. A. Díez, «Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered,» Waste Management, vol. 24, nº 5, pp. 463-469, 2004.
M. P. G. A. F. .. O. A. C. J. Cen-Puc, «A dedicated electric oven for characterization of thermoresistive polymer nanocomposites,» Journal of Applied Research and Technology, vol. 14, nº 4, pp. 268-277, 2016.
H. Aguirre Corrales y C. A. Orozco Hincapié, «ESTUDIO DINAMICO DE UN HORNO DE RESISTENCIAS ELECTRICAS CONVERTIDO A GAS,» Scientia Et Technica, vol. 15, nº 42, pp. 339-344, 2009.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Avances: Investigación en Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.