Remediación fotocatalítica de aguas residuales simuladas contaminadas con tetraciclina

Autores/as

DOI:

https://doi.org/10.18041/1794-4953/avances.1.5385

Palabras clave:

Antibiótico, cinética de reacción, degradación, fotocatalizador, tetraciclina

Resumen

La tetraciclina (TC) es un antibiótico ampliamente utilizado en medicina humana y veterinaria. A causa de esto y de que su absorción es muy pobre en seres humanos y en animales, se excreta parcialmente en el medio ambiente, lo que está causando una creciente problemática. Con la finalidad de presentar una solución, se planteó el estudio de la cinética por medio de un procedimiento de fotocatálisis heterogénea a escala laboratorio, en el cual se prepararon tres soluciones de TC con diferentes concentraciones (30, 40 y 50 ppm). El proceso fotocatalítico constó del uso del dióxido de titanio como fotocatalizador a una concentración de 80 ppm, un pH de 4,5, una lámpara UV-VIS de 60 W y un tiempo de irradiación de 40 mins. De la reacción se halló que la cinética es de orden 1, por lo que la solución de 30 ppm mostró mejores resultados en cuanto a la degradación representada por la disminución del carbono orgánico total y por espectrofotometría UV-VIS.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

S. Vaz Jr., Analytical Chemistry Applied to Emerging Pollutants. New York: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-74403-2_1

T. Heberer, "Occurrence fate and removal of pharmaceutical residues in the aquatic environment a review of recent research data", Toxicol Left., vol. 131, pp. 5-17, 2002. https://doi.org/10.1016/S0378-4274(02)00041-3

C. Reyes et al., "Degradation and inactivation of tetracycline by TiO2 photocatalysis,", J. Photochem. Photobiol. A: Chem., vol. 184, pp. 141-146, 2006. https://doi.org/10.1016/j.jphotochem.2006.04.007

C. Adams y J. Kuzhikannil, "Effects of UV/H2O2 preoxidation on the aerobic biodegradability of quaternary amine surfactants", Water Res., vol. 34, n.º 2, pp. 668-672, 2000. https://doi.org/10.1016/S0043-1354(99)00186-4

J. M. Pépin, Impacts écotoxicologiques de certains médicaments dans l’environnement. Quebec: Université of Sherbrooke, 2006 [en línea]. Disponible: http://hdl.handle.net/11143/7379

M. N. Chong, B. Jin, C. W. Chow y C. Saint, "Recent developments in photocatalytic water treatment technology: a review”, Water Res., vol. 44, pp. 2997-3027, 2010. https://doi.org/10.1016/j.watres.2010.02.039

N. C. Klein y B. A. Cunha, "Tetracyclines”, Med. Clin. N. Am., vol. 79, pp. 789-801, 1995. https://doi.org/10.1016/S0025-7125(16)30039-6

Y. Ji, C. Ferronato, A. Salvador, X. Yang y J.-M. Chovelon, "Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics”, Sci. Total Environ., vol. 472, pp. 800-808, 2014. https://doi.org/10.1016/j.scitotenv.2013.11.008

K. Kummerer, “Antibiotics in the aquatic environment– a review – Part I”, Chemosphere, vol. 75, n.º 4, pp. 417–434, 2009. https://doi.org/10.1016/j.chemosphere.2008.11.086

F. G. Calvo-Flores, J. I.-García y J. A. Dobado, Emerging Pollutants, Origin, Structure and Properties. Berlin: Wiley-VCH Verlag GmbH, 2018.

M. Klavarioti, D. Mantzavinos y D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes”, Environ. Int., vol. 35, n.º 2, pp. 402–417, 2009. https://doi.org/10.1016 /j.envint.2008. 07.009

T. A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.-J. Brauch, B. Haist-Gulde et al., "Removal of Pharmaceuticals during drinking water treatment”, Environ. Sci. Tech., vol. 36, pp. 3855-3863, 2002. https://doi.org/10.1021/es015757k

J. A. Díaz Peromingo, I. Villamil Cajoto y L. Buján de Gonzalo, " Adecuación de la disponibilidad farmacológica en un Servicio de Medicina Interna a la lista de medicamentos esenciales de la OMS”, Med. Interna, vol. 24, n.º 4, pp. 173-176, 2007 [en línea]. Disponible: http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S0212-71992007000400004

S. Kaniou, K. Pitarakis, I. Barlagianni y I. Poulios, "Photocatalytic oxidation of sulfamethazine”, Chemosphere, vol. 60, pp. 372-380, 2005. https://doi.org/10.1016/j.chemosphere.2004.11.069

D. Klauson, J. Babkina, K. Stepanova, M. Krichevskaya y S. Preis, "Aqueous photocatalytic oxidation of amoxicillin”, Catalysis Today, vol. 151, pp. 39-45, 2010. https://doi.org/10.1016/j.cattod.2010.01.015

X. Zhang, F. Wu, X. Wu, P. Chen y N. Deng, "Photodegradation of acetaminophen in TiO(2) suspended solution”, J. Hazard Mater., vol. 157, pp. 300-7, 2008. https://doi.org/10.1016/j.jhazmat.2007.12.098

T. Hirakawa y Y. Nosaka, “Selective production of superoxide ions and hydrogen peroxide over nitrogenand sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems”, J. Phys. Chem. C, vol. 112, n.º 40, pp. 15818–15823, 2008. https://doi.org/10.1021/jp8055015

K. Ishibashi, A. Fujishima, T. Watanabe, y K. Hashimoto, “Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water”, J. Phys. Chem. B, vol. 104, n.º 20, pp. 4934–4938, 2000. https://doi.org/10.1021/jp9942670

H. C. Zeng, “Preparation and integration of nanostructured titanium dioxide”, Curr. Opin. Chem. Eng., vol. 1, n.º 1, pp. 11-17, 2011. https://doi.org/10.1016/j.coche.2011.07.002

G. S. Falka, M. Borlafa, M. J. López-Muñoz, J. B. Rodrigues Neto, R. Moreno, “Photocatalytic activity of nanocrystalline TiNb2O7 obtained by a colloidal sol-gel route”, Ceram. Int., vol. 44, pp. 7122–7127, 2018. https://doi.org/10.1016/j.ceramint.2018.01.153.

V. Kumar, N. Dasgupta y S. Ranjan, Environmental Toxicity of Nanomaterials, New York: CRC Press, Taylor & Francis Group, 2018.

R. Molinari, F. Pirillo, V. Loddo, y L. Palmisano, "Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor”, Catalysis Today, vol. 118, pp. 205-213, 2006. https://doi.org/10.1016/j.cattod.2005.11.091

Si Li y Jiangyong Hu, “Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms”, J. Hazard. Mat. vol. 318, pp. 134-144, 2016. https://doi.org/10.1016/j.jhazmat.2016.05.100

J. Lyu, Z. Zhou, Y. Wang, J. Li, X. Wei, “Platinum-enhanced amorphous TiO2-filled mesoporous TiO2 crystals for the photocatalytic mineralization of tetracyclinbe hydrochloride”, J. Hazard. Mat, vol. 373, 5 July 2019, pp. 278-284. https://doi.org/10.1016/j.jhazmat.2019.03.096

A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, S.-M. Lee, “Au-nanoparticle/nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light”, J. Ind. Eng. Chem., vol. 69, n.º 25 January 2019, pp. 141-152. https://doi.org/10.1016/j.jiec.2018.09.027

L. Rimoldi, D. Meroni, G. Cappelletti y S. Ardizzone, “Green and low-cost tetracycline degradation processes by nanometric and immobilized TiO2 systems”, Catalysis Today, vol. 281, part 1, 2017, pp. 38-44, https://doi.org/10.1016/j.cattod.2016.08.015

A. Nezamzadeh-Ejhieh y A. Shirzadi, “Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline”, Chemosphere, vol. 107, pp. 136–144, 2014. . https://doi.org/10.1016/j.chemosphere.2014.02.015

X. Hu, Z. Sun, J. Song, G. Zhang, C. Li, S. Zheng, “Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline”, J. Colloid Interf. Sci., vol. 533, 2019. https://doi.org/10.1016/j.jcis.2018.08.077

X.-D. Zhu, Y.-J. Wang, R.-J. Sun, D.-M. Zhou, “Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2”, Chemosphere, vol. 92, pp. 925–932, 2013. https://doi.org/10.1016/j.chemosphere.2013.02.066

S. A. Amin, M. Pazouki y A. Hosseinnia. “Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli”. Powder Tech., vol. 196, pp. 241-245, 2009. https://doi.org/10.1016/j.powtec.2009.07.021.

R. Azizi, S. Rasouli, N.Ahmadi, A. Kolaei y M. A. Azizi, “Systematic investigation of experimental conditions on the particle size and structure of TiO2 nanoparticles synthesized by a sol-gel method”, J. Ceram. Process. Res., vol. 13, pp. 164–169, 2012.

U. G. Akpan y B. H. Hameed, “The advancements in sol–gel method of doped-TiO2 photocatalysts”, Applied Catalysis A: General vol. 375, pp. 1–11, 2010, https://doi.org/10.1016/j.apcata.2009.12.023

V. Murugesan, N. Venkatachalam y M. Palanichamy, “Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance”, Mat. Chem. Phys., vol. 104, pp. 454–459, 2007. https://doi.org/10.1016/j.matchemphys.2007.04.003

K. Vasanth Kumar, K. Porkodi y F. Rocha, “Langmuir–Hinshelwood kinetics: A theoretical study”, Catal. Commun., vol. 9, pp. 82–84, 2008. https://doi.org/10.1016/j.catcom.2007.05.019.

Z. Zhang, C.-C. Wang, R. Zakaria y J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts”, J. Phys. Chem. B, vol. 252, 1998. https://doi.org/10.1021/jp982948+

C. Rath, P. Mohanty, A. C. Pandey y N. C. Mishra, “Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles”, J. Phys. D: Appl. Phys., vol. 42, 2009.

W. Singheiser y W. Auer, “Study on the titanium (IV) oxide (Rutile) defects using conductivity and transport measurements”, Ber. Bunsen-Gesellschaft, vol. 81, n.º 1167, 1977.

F. Amano, O. O. Prieto-Mahaney, N. Murakami, R. Abe, y B. Ohtani, “Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders”, Chem. Lett., vol. 38, n.º 3, 2009. https://doi.org/10.1246/cl.2009.238

R. K. Wahi, Y. Liu, J. C. Falkner y V. L. Colvin, “Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area”, J. Colloid Interface Sci., vol. 302, pp. 530-536, 2006.

Descargas

Publicado

2019-09-29

Cómo citar

Remediación fotocatalítica de aguas residuales simuladas contaminadas con tetraciclina. (2019). Avances Investigación En Ingeniería, 16(1 (Enero-Junio), 130-140. https://doi.org/10.18041/1794-4953/avances.1.5385