Quasi-relaxation transforms in metallic specimens and meromorphic curves of quasi-relaxation

Cómo citar

Bulnes, F., Stropovsky, Y., Yermishkin, V., & Maya, J. (2011). Quasi-relaxation transforms in metallic specimens and meromorphic curves of quasi-relaxation. Avances: Investigación En Ingeniería, 8(2), 58–66. Recuperado a partir de https://revistas.unilibre.edu.co/index.php/avances/article/view/2707


Into the study of quasi-relaxation, in the pastresearches it is have concluded that the conditionof meta-stability in the metallic specimen is givenby the plasticity explained by the plastic energy inthe process of the quasi-relaxation [18], and [22]. Itis calculate through of quasi-relaxation functionalof this energy to obtain a spectra in the space D(s- e, t), that induced the existence of functions j(t),and Y(t), related with the fundamental curves ofquasi-relaxation given by s(t), with their poles in t= -1/k(s0 - s1), the which it is get in the maximumof stress given by s0 = s1. Also the tensor ofplastic deformation that represents the plastic loadduring the application of specimen machine [1],not can be obtained without poles in the spaceD(s, t), corresponding to the curves calculated in[19], into the space D(s - e, t), by curves that inthe kinetic of the process of quasi-relaxation arerepresented by experimental curves in coordinateslgs - t [5]. This situation not can be eluded,since in this phenomena exist dislocations that goconform fatigue in the nano-crystalline structureof metals [12]. From this point of view, is necessaryto obtain a spectral study related with the energyusing functions that permits the modeling andcompute the states of quasi-relaxation included inthe poles in the deformation problem to completethe solutions in the space D(s - e, t), and try a newmethod of solution of the differential equationsof the quasi-relaxation analysis. In a nearly futuredevelopment, the information obtained by thisspectral study (by our integral transforms) will canto gives place to the programming through of thespectral encoding of the materials in the metastabilitystate, that which is propitious to a nanotechnologicaltransformation of materials, concretecase, some metals.



1. Casey, J. and Naghdi, P. M., Constitutive Resultsfor Finitely Deforming Elastic-Plastic Materials, inConstitutive Equations: Macro and ComputationalAspects, Cap. I y II., ASME, 1984.

2. Truesdell, C., Rational Mechanics, Academic Press,N. Y., 1983.

3. Landau, L. and Lifshitz, E. M., Mechanics,Adisson-Wesley, 1960.

4. Marsden, J. E. and Abraham, R., Manifolds,Tensor Analysis and Applications, Addison-Wesley,Massachusetts, 1983.

5. F. Bulnes, and V. Yermishkin, P. Tamayo, NewMethod in the Characterization of Materials ofEngineering, Mem. Workshop. APPLEDMATH,vol. 1, pp. 239-254, Mexico, 2005.

6. Truesdell, C. and Toupin, R. A., The ClassicalField Theories, in Encyclopaedia of Physics, Vol.III/1 Springer-Verlag, Berlin, 1960.

7. F. Bulnes, Superior Treatise of Mathematics:Signals and Systems Analysis, Faculty of Sciences,UNAM, Mexico, ETC-UNAM, 1998.

8. Simon B. and Reed, M., “Mathematical methodsfor physics,Vol. I (functional analysis),” Cap. III y IV.,Academic Press. N. Y., 1972.

9. Savitsky EM, Ivanova VS, Yermishkin VA,Struktura I Svoystva Monokristallov Tugoplavkij Metallov.M: Nauka, USSR, 1973, p.139-143.

10. Yermishkin VA, Plastinin VM, Monokristallytugoplavkij i redkij metallov, splavov i soyedininii. M:Nauka, USSR, 1977. Pgs.157-159.

11. Suzuki T, Takeuchi S, Yoshinaga H, DislocationDynamics and Plasticity. Berlin 14 Rev. LatinAm. Metal.Mater. 2009; 29 (1): 3-14 (Germany): Springer-Verlag, 1991.

12. Imura T, Dynamic Study of the Dislocation Progressof the Plastic Deformation and Fracture by High VoltageElectron Microscopy, London-New York (U.K.-USA):Academic Press, 1974, p. 179-188.

13. Cottrell AH, Nabarro FRN. In: Dislocations andPlastic Flow in Crystals, Cottrell AH (ed.). Oxford(UK): Clarendon, 1953, p 98.

14. Hirth JP, Lothe J, Theory of Dislocations, Instituteof Physics, Oslo University. New York USA):McGraw-Hill Book Company, 1972, p 599.

15. Geminov VN, Yermishkin VA, “Quasirelaxationas a powerful method of a steady-state creepcharacteristics prediction”. In: Procceding of IIInternational. Conference on Mechanical Behavior ofMaterials. Boston (USA): American Society forMetals, 1976, p.138-154.

16. Ivanova VS, Yermishkin VA, Prochnost IPlastichnost Tugoplavkij Metallov I Monokristallov.Moscow (Russia): Ed. Metallurgiya, 1976, p. 80-101, and Ivanova VS, Yermishkin VA, SmirnovEG, Fiz. J. O.Metal. 1978; 5: 133-136.

17. Masey, E., Mechanics of Continuum Media .Shaums-Mc Graw-Hill, New York, USA, 1973.

18. Bernhard Gross, Mathematical Structure of theTheories of Viscoelasticity. pp. 31-33 Hermannand Cie, Paris (1953).

19. F. Bulnes, “Analysis of Prospective andDevelopment of Effective Technologiesthrough Integral Synergic Operators of theMechanics”. In Proceedings in MechanicalEngineering, P. S. I. J. A. Echeverria, ed., Vol.3 of Proc.14a.CCIA-CIM2008, Habana, Cuba,pp.1021–1029., 2008

20. Rudin W, “Real and Complex Analysis,”Academic Press. N. Y., 1969.

21. Markusevich, “Theory of Analytic Functions,”Vol. I, and II, Mir Moscu, 1980.

22. F. Bulnes, V. Yermishkin and E. Toledano,Constitutive Equations of the Stress-Strain Tensorfor a Metal Sample and Their Functional of Energy,Proc. III CIMM., Department of MechanicalEngineering UNAL, Bogotá., Colombia. 2009.

23. Jonikomb, R., Plasticheskaya deformaciya,Metallov. Mir 1972, 408S.

24. Dieudonné, J.,Tratise on Analyse: Volume VI,Academic Press. New York, USA, 1978.

25. Bulnes, F. and Shapiro, M., “On GeneralTheory of Integral Operators to Analysisand Geometry,” IM/UNAM, SEPI/IPN,Monograph in Mathematics. 1st ed., J. P.Cladwell, Ed. Mexico, 2007.

26. West, B. Bologna, M. and Grigolini, P., “Physicsof Fractal Operators,” Institute for Non-linearScience, Springer, 2003.


Los datos de descargas todavía no están disponibles.