Efecto del tratamiento previo de ácido diluido - peróxido en la hierba napier (Pennisetum purpureum schumach) para mejorar la reducción Producción de azúcar por hidrólisis enzimática

Autores/as

  • Cristian Bohórquez Universidad de Pamplona
  • Eliseo Amado González Universidad de Pamplona
  • Marlon Martínez Reina Universidad de Pamplona

DOI:

https://doi.org/10.18041/1794-4953/avances.2.226

Palabras clave:

Ácido diluido, Hidrólisis, azúcares reductores, napier Hierba, Pennisetum purpureum, Peróxido

Resumen

El pasto napier (Pennisetum purpureum Schumach.)Es una biomasa potencial para la conversión aEtanol, bioenergía o productos de alto valor añadido.Variación en los parámetros de prehidrólisis (tiempo, ácidoFuerza,% de la biomasa, tamaño de partícula) y enzimáticosLas condiciones de sacarificación fueron examinadas para su conversiónDe hierba napier en azúcares fermentables.Un pretratamiento del sustrato insoluble en agua(WISH2SO _ {4}) En 15,1% de la producción de azúcar reductor(RSY) se realizó con peróxido (H202) A 122 ° C.La relación entre RSY y el proceso ácidoLos parámetros se describen mediante un modelo matemáticoDerivados de los datos experimentales. El peróxidoPretratamiento a 0,7% (p / p), partícula de 4,75 mmConcentración de biomasa del 8% (p / v),La producción RSY de la hidrólisis enzimáticaEn 97,6% después de 75 min. La hidrólisis enzimáticaProdujo 287,81 mg / (g de muestra seca inicial) deGlucosa y 245,81 mg / (g de muestra seca inicial) deXilosa. Por lo tanto, se concluyó que la combinaciónEl pretratamiento con ácido peróxido es unMétodo ecológico para la enzimaHidrólisis de la hierba napier.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Sheehan, J., Himmel, M. (1999) Enzymes, energy,and the environment: Cellulose development in theemerging bioethanol industry. Biotechnol Progr, 15,817-827

Sakai, S., Tsuchida, Y., Nakamoto, I., Okino,S., Ichihashi, O., Kawaguchi, H., et al. (2007).Effect of lignocellulose-derived inhibitors ongrowth of and ethanol production by growtharrestedCorynebacterium glutamicum R. ApplEnviron Microbiol 73, 2349-2353.

Anderson, W., Peterson, J., Akin, D., MorrisonW. (2005). Enzyme Pretreatment ofGrass Lignocellulose for Potential High-ValueCo-products and an Improved FermentableSubstrate. Applied Biochem Biotechnol, 121, 303-310.

Ballesteros, I., Ballesteros, M., Manzanares, P.,Negro, J., Oliva, J, Sáez, F. (2008). Dilute sulfuricacid pretreatment of cardoon for ethanolproduction. Biochem Eng. J., 42, 84-91.

Mosier, N., Wyman, C., Dale, B., Elander, R.,Lee, Y., Holtzapple, M., Ladisch, M. (2005).Features of promising technologies for pretreatmentof lignocellulosic biomass. Bioresour.Technol, 96, 673-686.

El-Zawawya, W., Ibrahima, M., Abdel-Fattahb,Y., Nadia, A., Solimanb, N., Mahmoudc, M.(2011). Acid and enzyme hydrolysis to convertpretreated lignocellulosic materials into glucosefor ethanol production. Carbohydr Polymers, 84,865-871.

Chen, W., Tu, Y., Sheen, H. (2010). Impact ofdilute acid pretreatment on the structure ofbagasse for bioethanol production. Int J EnergyRes, 34, 265-274 (2010).

Jung. S., Foston, M., Sullards, M., RagauskasA. (2010). Surface characterization of diluteacid pretreated Populus deltoides by ToF-SIMS.Energy Fuels, 24,1347-1357.

Mao, J., Holtman, K., Franqui-Villanueva D.(2010). Chemical structures of corn stover andits residue after dilute acid prehydrolysis andenzymatic hydrolysis: Insight into factors limitingenzymatic hydrolysis. J. Agric. Food Chem, 58,11680-11687.

Pingali, S., Urban, V., Heller, W., McGaughey,J., O’Neill, H., Foston, M., et al. (2010). Breakdownof cell wall nanostructure in dilute acidpretreated Biomass. Biomacromol, 11, 2329-2335.

Sannigrahi, P., Ragauskas, A., Miller, S. (2008).Effects of two-stage dilute acid pretreatmenton the structure and composition of lignin andcellulose in loblolly pine. Bioenergy Res, 1, 205-214.

Zhang, J., Ma, X., Yu, J., Zhang, X., Tan, T.(2011). The effects of four different pretreatmentson enzymatic hydrolysis of sweetsorghum bagasse. Bioresour. Technol. 102, 4585-4589.

Elander, R., Dale, B., Holtzapple, M., Ladisch,M., Lee, Y., Mitchinson, C., et al. (2009). Summaryof findings from the Biomass RefiningConsortium for Applied Fundamentals andInnovation (CAFI): corn stover pretreatment.Cellulose 16,649-659.

Quintero, J., Montoya, M., Sánchez, O., Giraldo,O., Cardona, C. (2008). Fuel ethanol productionfrom sugarcane and corn: comparative analysisfor a Colombian case. Energy, 33, 385-399.

Rabelo, S., Amezquita-Fonseca, N., Andrade,R., Filho, M., Costa, A. (2011). Ethanol productionfrom enzymatic hydrolysis of sugarcanebagasse pretreated with lime and alkaline hydrogenperoxide. Biomass Bioenergy, 35, 2600-2607.

Gould, J. (1985). Studies on the mechanism ofalkaline peroxide delignification of agriculturalresidues. Biotechnol Bioeng, 27, 225-231.

Lachenal, D., De Choudens, C., Monzie, P.(1980). Hydrogen peroxide as a delignifyingagent. Tappi J, 63, 119-122 .

Azzam, A. (1989). Pretreatment of canebagasse with hydrogen peroxide for enzymatichydrolysis of cellulose and ethanol fermentation.J. Environ. Sci. Health B., 24, 421-433.

Yamashita, Y., Shono, M., Sasaki, Ch., Nakamura,Y. (2010). Alkaline peroxide pretreatmentfor efficient enzymatic saccharification ofbamboo. Carbohydr Polym, 79 , 914–920.

Ayeni, A., Hymore, F., Mudliar, S., Deshmukh,S., Satpute, D., Omoleye, J., Pandey, R. (2013).Hydrogen peroxide and lime based oxidativepretreatment of wood waste to enhanceenzymatic hydrolysis for a biorefinery: Processparameters optimization using response surfacemethodology. Fuel, 106, 187-194.

Yáñez, R., Alonso, J., Parajó, J. (2006). Enzymaticsaccharification of hydrogen peroxide-treatedsolids from hydrothermal processing of ricehusks. Process Biochem, 41,1244-1252.

Gao, M., Yano, S., Inoue, H., Sakanishi, K.(2012). Combination of wet disk milling andhydrogen peroxide treatments for enhancingsaccharification of sugarcane bagasse. BiochemEng J., 68,152-158 .

Tan, H., Yang, R., Sun, W., Wang, S. (2010).Peroxide Acetic Acid Pretreatment to RemoveBagasse Lignin Prior to Enzymatic Hydrolysis.Ind Eng Chem Res, 49, 1473-1479.

Sun, R., Tomkinson, J., Zhu, W., Wang, S.(2000). Delignification of maize stems byperoxy-mono-sulfuric acid, peroxy-formicacid, per-acetic acid, and hydrogen peroxide.1. Physicochemical and structural characterizationof the solubilized lignins. J Agric Food Chem,48,1253-1262.

Nimz, H., Schwind, H. (1979). Oxidation ofmonomeric lignin model compounds with peraceticacid. Cellulose Chem Techno,13, 35-46.

Yuan, Z., Ni, Y., Heiningen, A. (1998). Animproved peracetic acid bleaching process.Appita J., 51, 377-380.

Teixeira, L., Linden, J., Schroeder, H. (2000).Simultaneous saccharification and cofermentationof peracetic acid-pretreated biomass. ApplBiochem Biotechnol, 84-86,111-127.

Teixeira, L., Linden, J., Schroeder, H. (1999).Optimizing peracetic acid pretreatment conditionsfor improved simultaneous saccharificationand co-fermentation (SSCF) of sugar can bagasseto ethanol fuel. Renew Ener, 16,1070-1073.

Khama, L., Bigot, Y., Delmas, M., Avignon, G.(2005). Delignification of wheat straw using amixture of carboxylic acids and peroxoacids IndCrops Prod, 21, 9-15.

National Renewable Energy Laboratory(NREL). (2008). Chemical Analysis andTesting Laboratory Analytical Procedures:TP-510-42620, TP-510-42619, TP-510-42621,TP-510-42622, TP-510-42623, TP- 222 om-98,Golden, USA. www.ott.doe.gov/biofuels/analyticalmethods.html.

Miller, G.(1959). Glucose DNS Metodology.Anal Chem, 31, 426-428.

Ghose, T. (1987). Measurement of cellulaseactivities. Pure Appl Chem, 59, 257-268.

Madakadze, C., Masamvu, T., Radiotis, T., Li, J.,Smith, D. (2010). Evaluation of pulp and papermaking characteristics of elephant grass (Pennisetumpurpureum Schum) and switchgrass(Panicum virgatum L.). African J Environ SciTechnol, 4,465-470.

López , A., Ortegón, G., Robles, F. (2010).Obtaining of Reducing Sugars from KikuyuGrass (Pennisetum Clandestinum). AvancesInvest Ing., 13:98-101.

Prinsen, P., Gutiérrez, A., Del Río, J. (2012).Lipophilic Extractives from the Cortex andPith of Elephant Grass (Pennisetum purpureumSchumach.) Stems. J Agric Food Chem., 60, 6408-6417.

Del Río, J., Prinsen, P., Rencoret, J., Nieto, L.,Jiménez-Barbero, J., Ralph, J., et al. (2012).Structural Characterization of the Lignin inthe Cortex and Pith of Elephant Grass (Pennisetumpurpureum) Stems. J Agric Food Chem.,60, 3619–3634.

Sun, Y., Cheng, J. (2005). Diluted acid pretreatmentof rye straw and Bermuda grass forethanol production. Bioresource Technol., 96,1599-1606.

Anderson, W., Adien, B., Brandon, S., PetersonJ. (2008).Assesment of Bermuda grass andbunch grasses as feedstock for conversion toethanol. Appl. Biochem. Biotechnol, 145, 13-21.

Hodge, D., Karim, M., Schell, D., Macmillan, J.(2008). Soluble and insoluble solids contributionsto high-solids enzymatic hydrolysis oflignocellulose. Bioresour. Technol, 99, 8940-8948.

Magcale – Macandog, D., Predo, C., Menz, K.(1998). Napier grass strips and livestock: a bioeconomicanalysis. Agrofores Sys., 40, 41-58.

Somerville, Ch., Youngs, H., Taylor, C., Davis,S., Long, S. (2013). Feedstocks for lignocellulosicbiofuels. Scien., 329, 790-792.

Su, Z., Bu, L., Zhao, D., Sun, R., Jiang, J. (2012).Processing of Lespedeza stalks by pretreatmentwith low severity steam and post-treatmentwith alkaline peroxide. Ind Crops and Prod., 36,1-8.

Ogundipe, A., Lu, Y. (1989). Ethanol productionfrom dilute acid hydrolyzate of sawdusttreated with hydrogen peroxide. Biomass., 20,291-299.

Kupiainen, L., Ahola, J., Tanskanen, J. (2012).Distinct Effect of Formic and Sulfuric Acidson Cellulose Hydrolysis at high temperatures.Ind Eng Chem Res., 51,3295-3300.

Arora, A., Martin, E., Pelkki, M., Carrier, D.(2013). Efect of Formic Acid and Furfural onthe Enzymatic Hydrolysis of Cellulose Powderand Dilute Acid-Pretreated Poplar Hydrolysates.ACS sustainable Chem Eng., 1, 23-28.

Descargas

Publicado

2014-12-01

Cómo citar

Efecto del tratamiento previo de ácido diluido - peróxido en la hierba napier (Pennisetum purpureum schumach) para mejorar la reducción Producción de azúcar por hidrólisis enzimática. (2014). Avances Investigación En Ingeniería, 11(2), 48-55. https://doi.org/10.18041/1794-4953/avances.2.226