Maximum Likelihood Model
DOI:
https://doi.org/10.18041/1657-2815/libreempresa.2020v17n2.8027Keywords:
Optimization, Maximization, Asymptotic efficiency, Unbiased, Large samples, Constraints, Wald test, Lagrange multiplierAbstract
The objective of this article is to make an introduction to the Maximum Likelihood (MV) model, widely used for decades in statistics, biometrics, engineering and econometrics. Despite its usefulness, basic econometrics courses continue to emphasize Ordinary Least Squares (OLS) due to its ease of mathematics and conceptual understanding and leave the MV for exercises with commercial software that does include it by default, due to the superiority of the results compared to those of the OLS. MV is widely used for non-linear regressions and large samples, for example, models of dichotomous dependent variables such as Logit and Probit; conditional heteroscedasticity such as GARCH and EGARCH, censored and truncated models, etc. It is expected that as artificial intelligence develops in data science and machine learning, OLS will be discarded.
Downloads
References
Amemiya, T. (1985). Advanced Econometrics. Oxford: Basil Blackwell. ISBN 0-631-13345-3.
Berndt, E. R. and Savin, N. E. (1977), “Conflict Among Criteria for Testing Hypotheses in the Multivariate Linear Regression Model”, Econometrica, 45 (5). 1263-1277. Ch. 13: Wald, Likelihood Ratio. and Lagrange Multiplier Tests 825. https://doi.org/10.2307/1914072
Buck, A. J. (2021). Econometrics Lecture Notes. Temple University. http://www.ajbuckeconbikesail.net/notes/lectures.html
Chow. G.C. (1983). Econometric Methods, McGraw-Hill, New York.
Cramér, H. (1946). Mathematical Methods of Statistics. Princeton, NJ: Princeton Univ. Press. ISBN 0-691-08004-6. OCLC 185436716. https://archive.org/details/in.ernet.dli.2015.223699
Engle. R. F. (1982a). “A General Approach to Lagrange Multiplier Model Diagnostics”, Journal of Econometrics,20(1) 83-104. https://doi.org/10.1016/0304-4076(82)90104-X
Fox, J. (1997) Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage Publications. https://psycnet.apa.org/record/1997-08857-000
Greene, W. (2012) Econometric Analysis, Pearson. http://www.mysmu.edu/faculty/zlyang/ECON6002_21-Web/William_H_Greene-Econometric_Analysis-7th.pdf
Gujarati, D. y Porter D. (2010) Econometría Básica. Ed. McGraw-Hill. https://fvela.files.wordpress.com/2012/10/econometria-damodar-n-gujarati-5ta-ed.pdf
Hamilton, J. (1994) Time Series Analysis, Princeton University Press.
Johnston, J. (1984) Econometric Methods, McGraw-Hill, 3rd ed.
Johnston, J. and DiNardo, J. (1997) Econometric Methods Fourth Edition. New York, NY: The McGraw-Hill Companies, Inc. https://economics.ut.ac.ir/documents/3030266/14100645/econometric%20methods-johnston.pdf
Judge, G. G., Carter Hill, R., Griffiths, W. E., Lutkepohl, H. y Lee, Tsoung-Chao (1984). Theory and Practice of Econometrics, John Wiley & Sons, Nueva York. https://pdfcoffee.com/george-g-judge-william-e-griffiths-r-carter-hill-helmut-ltkepohl-tsoung-chao-lee-the-theory-and-practice-of-econometrics-wiley-series-in-probability-and-statistics-wiley-1985-pdf-free.html
Kennedy, P. (2008) A Guide to Econometrics, Blackwell Publishing. http://masonlec.org/site/rte_uploads/files/Econometrics%20Book%20-%20Intro,%20Ch%201%20and%202.pdf
Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis, Springer Verlag, New York. https://www.springer.com/gp/book/9783540401728
Maddala, G.S. (1992) Econometria. Ed McGraw-Hill. https://www.academia.edu/15259731/INTRODUCCI%C3%93N_A_LA_ECONOMETR%C3%8DA_LICENCIATURA_EN_ADMINISTRACI%C3%93N_Y_DIRECCI%C3%93N_DE_EMPRESAS_2O_CURSO_FABIOLA_PORTILLO_FEBRERO
Novales, A. (1993). Econometría. 2da. edición. Ed. McGraw-Hill. https://es.scribd.com/doc/252571609/Econometria-Alfonso-Novales-2da-Edicion
Pindyck, R. y Rubinfeld D. (2002). Modelos econométricos y pronóstico económico. Ed. McGraw-Hill.
Pulido, A. (1987).Modelos econométricos. 2da. edición. Ed. Pirámide. ISBN 10: 8436802144ISBN 13: 9788436802146
Rao, C. R. (1948) “Large Sample Tests of Statistical Hypotheses Concerning Several Parameters with Application to Problems of Estimation”, Proceedings of the Cambridge Philosophical Society, 44150-57. https://doi.org/10.1017/S0305004100023987
Rao, C. R. (1945). "Information and the accuracy attainable in the estimation of statistical parameters". Bulletin of the Calcutta Mathematical Society. 37: 81–89. MR 0015748.
Wald, A. (1943). Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Transactions of the American Mathematical Society. Vol. 54, No. 3 (Nov., 1943), pp. 426-482 (57 pages). Published By: American Mathematical Society. https://doi.org/10.2307/1990256
Wooldridge, J. M. (2010). Introducción a la Econometría. Un enfoque moderno. Editorial Thomson-Learning. https://herioscarlanda.files.wordpress.com/2018/10/wooldridge-2009-introduccic3b3n-a-la-econometrc3ada-un-enfoque-moderno.pdf