Maximum Likelihood Model

Authors

  • Alberto Gómez-Mejía Universidad Libre Seccional Cali, Cali - Colombia

DOI:

https://doi.org/10.18041/1657-2815/libreempresa.2020v17n2.8027

Keywords:

Optimization, Maximization, Asymptotic efficiency, Unbiased, Large samples, Constraints, Wald test, Lagrange multiplier

Abstract

The objective of this article is to make an introduction to the Maximum Likelihood (MV) model, widely used for decades in statistics, biometrics, engineering and econometrics. Despite its usefulness, basic econometrics courses continue to emphasize Ordinary Least Squares (OLS) due to its ease of mathematics and conceptual understanding and leave the MV for exercises with commercial software that does include it by default, due to the superiority of the results compared to those of the OLS. MV is widely used for non-linear regressions and large samples, for example, models of dichotomous dependent variables such as Logit and Probit; conditional heteroscedasticity such as GARCH and EGARCH, censored and truncated models, etc. It is expected that as artificial intelligence develops in data science and machine learning, OLS will be discarded.

Downloads

Download data is not yet available.

Author Biography

  • Alberto Gómez-Mejía, Universidad Libre Seccional Cali, Cali - Colombia

    Researcher and Professor of Economics. Universidad Libre Seccional Cali, Cali - Colombia

    https://orcid.org/0000-0002-0312-2236

References

Amemiya, T. (1985). Advanced Econometrics. Oxford: Basil Blackwell. ISBN 0-631-13345-3.

Berndt, E. R. and Savin, N. E. (1977), “Conflict Among Criteria for Testing Hypotheses in the Multivariate Linear Regression Model”, Econometrica, 45 (5). 1263-1277. Ch. 13: Wald, Likelihood Ratio. and Lagrange Multiplier Tests 825. https://doi.org/10.2307/1914072

Buck, A. J. (2021). Econometrics Lecture Notes. Temple University. http://www.ajbuckeconbikesail.net/notes/lectures.html

Chow. G.C. (1983). Econometric Methods, McGraw-Hill, New York.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton, NJ: Princeton Univ. Press. ISBN 0-691-08004-6. OCLC 185436716. https://archive.org/details/in.ernet.dli.2015.223699

Engle. R. F. (1982a). “A General Approach to Lagrange Multiplier Model Diagnostics”, Journal of Econometrics,20(1) 83-104. https://doi.org/10.1016/0304-4076(82)90104-X

Fox, J. (1997) Applied regression analysis, linear models, and related methods. Thousand Oaks, CA: Sage Publications. https://psycnet.apa.org/record/1997-08857-000

Greene, W. (2012) Econometric Analysis, Pearson. http://www.mysmu.edu/faculty/zlyang/ECON6002_21-Web/William_H_Greene-Econometric_Analysis-7th.pdf

Gujarati, D. y Porter D. (2010) Econometría Básica. Ed. McGraw-Hill. https://fvela.files.wordpress.com/2012/10/econometria-damodar-n-gujarati-5ta-ed.pdf

Hamilton, J. (1994) Time Series Analysis, Princeton University Press.

Johnston, J. (1984) Econometric Methods, McGraw-Hill, 3rd ed.

Johnston, J. and DiNardo, J. (1997) Econometric Methods Fourth Edition. New York, NY: The McGraw-Hill Companies, Inc. https://economics.ut.ac.ir/documents/3030266/14100645/econometric%20methods-johnston.pdf

Judge, G. G., Carter Hill, R., Griffiths, W. E., Lutkepohl, H. y Lee, Tsoung-Chao (1984). Theory and Practice of Econometrics, John Wiley & Sons, Nueva York. https://pdfcoffee.com/george-g-judge-william-e-griffiths-r-carter-hill-helmut-ltkepohl-tsoung-chao-lee-the-theory-and-practice-of-econometrics-wiley-series-in-probability-and-statistics-wiley-1985-pdf-free.html

Kennedy, P. (2008) A Guide to Econometrics, Blackwell Publishing. http://masonlec.org/site/rte_uploads/files/Econometrics%20Book%20-%20Intro,%20Ch%201%20and%202.pdf

Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis, Springer Verlag, New York. https://www.springer.com/gp/book/9783540401728

Maddala, G.S. (1992) Econometria. Ed McGraw-Hill. https://www.academia.edu/15259731/INTRODUCCI%C3%93N_A_LA_ECONOMETR%C3%8DA_LICENCIATURA_EN_ADMINISTRACI%C3%93N_Y_DIRECCI%C3%93N_DE_EMPRESAS_2O_CURSO_FABIOLA_PORTILLO_FEBRERO

Novales, A. (1993). Econometría. 2da. edición. Ed. McGraw-Hill. https://es.scribd.com/doc/252571609/Econometria-Alfonso-Novales-2da-Edicion

Pindyck, R. y Rubinfeld D. (2002). Modelos econométricos y pronóstico económico. Ed. McGraw-Hill.

Pulido, A. (1987).Modelos econométricos. 2da. edición. Ed. Pirámide. ISBN 10: 8436802144ISBN 13: 9788436802146

Rao, C. R. (1948) “Large Sample Tests of Statistical Hypotheses Concerning Several Parameters with Application to Problems of Estimation”, Proceedings of the Cambridge Philosophical Society, 44150-57. https://doi.org/10.1017/S0305004100023987

Rao, C. R. (1945). "Information and the accuracy attainable in the estimation of statistical parameters". Bulletin of the Calcutta Mathematical Society. 37: 81–89. MR 0015748.

Wald, A. (1943). Tests of Statistical Hypotheses Concerning Several Parameters When the Number of Observations is Large. Transactions of the American Mathematical Society. Vol. 54, No. 3 (Nov., 1943), pp. 426-482 (57 pages). Published By: American Mathematical Society. https://doi.org/10.2307/1990256

Wooldridge, J. M. (2010). Introducción a la Econometría. Un enfoque moderno. Editorial Thomson-Learning. https://herioscarlanda.files.wordpress.com/2018/10/wooldridge-2009-introduccic3b3n-a-la-econometrc3ada-un-enfoque-moderno.pdf

Downloads

Published

2020-12-30

Issue

Section

Research Articles